In First Chance to Make a Learning Impression, my friend Will Richardson shares his disappointment with the “back-to-school” packets he just received in anticipation of his children’s next school year. Will explains how the focus of the packet is on everything but learning.

Just for fun, I set out to see how long it would take to find the word “learning” somewhere in the mix. Nothing on the first page, or the second, or the third…by the time I finally found the first instance I had stopped counting. It was a buried line in a letter from the principal explaining that due to NCLB, every teacher has to be “highly qualified” and that “every teacher continues life-long learning through professional development activities.”

Will’s 2013 article reminded me of a similar article I wrote for District Administration Magazine way back in 2004. I recommend reading Will’s article as well.

Gary Stager on One-sided Parent Contracts
Here’s a list of promises I think schools should keep
By: Gary Stager
District Administration, Sep 2004

DA Archive

The back-to-school commercials each summer fill me with dreadful flashbacks of my own days as a student. As a parent, the end of summer is signaled by a last-minute desire to squeeze in a bit more family fun and the arrival of a large ominous envelope from the local high school. The package contains countless documents commanding our immediate attention and signatures in triplicate.

This enormous collection of murdered trees contains countless rules, regulations and a list of innumerable sanctions the school intends to visit upon my child. As if this draconian catalogue of crimes and subsequent punishments were not bad enough, I am then expected to sign the documents, implying that I agree with them.

This recent and disturbing phenomenon leaves me with many unanswered questions. What if I don’t sign the forms? When did the local public school become a gulag? Was there a public meeting in The Hague at which these rules and sanctions were compiled and democratically agreed to? Is this the best way to start a fresh school year? Can I have Johnnie Cochran look over the documents before I affix my signature?

If the school expects parents to sign-off on a list of ways school discipline may be enforced, perhaps I can circulate a list of expectations for how I expect the school to educate my child. It only seems fair.

So here’s my list, in no particular order:

  • School to home communications will be proofread and spell-checked
  • Teachers will take reasonable steps to maintain expertise in their subject area
  • Homework will be purposeful and only assigned when necessary to reinforce a concept, engage in a long-term project or as the result of work not completed in-class
  • Children will be encouraged to play
  • Classroom libraries will be stocked with interesting books
  • Students will not be treated as numbers
  • Teachers will discuss current events with their students
  • Students will be encouraged to talk about books they read, not just create mobiles and book reports
  • School personnel will publish their e-mail addresses and respond to e-mail promptly
  • The school district Web site will be updated more often than every five years
  • Class sizes will be 20 or lower
  • Teachers will attend at least one professional learning event outside of the school district per year
  • Teachers will not talk down to children
  • Punishment will be viewed as a last resort
  • The school will offer rich visual and performing arts opportunities for all students
  • Curriculum will endeavor to remain relevant and connected to the world
  • Classroom rules will be developed democratically
  • There will be formal and informal opportunities for parents to interact with teachers
  • The principal will be accessible to students and parents
  • Administrators will make an effort to interact with students in positive contexts
  • Student diversity will be valued and celebrated
  • Cooperation will be valued over competition
  • The school will refrain from sorting, tracking, streaming and labeling children
  • Students will play a large role in all aspects of the life of the school;
  • Authentic forms of assessment will be used
  • A modern functioning computer will be available whenever a child needs one
  • Teachers will embrace opportunities to learn with and from students
  • The school will take teacher input seriously
  • Teachers will feel supported and encouraged to take risks
  • Effective models of professional development will be designed and include the participation of the principal
  • Equal attention and resources will be applied to the arts as to sports
The Coalition of Essential Schools offers 10 common principles for schools concerned with excellence–www.essentialschools.org/pub/ces_docs/about/phil/10cps/10cps.html

Laptops and Learning

Can laptop computers put the “C” (for constructionism) in Learning?
Published in the October 1998 issue of Curriculum Administrator

© 1998 – Gary S. Stager

“…Only inertia and prejudice, not economics or lack of good educational ideas stand in the way of providing every child in the world with the kinds of experience of which we have tried to give you some glimpses. If every child were to be given access to a computer, computers would be cheap enough for every child to be given access to a computer.” - Seymour Papert and Cynthia Solomon (1971)

In 1989, Methodist Ladies’ College (MLC) in Melbourne, Australia embarked on a still unparalleled learning adventure. Eighteen years after Solomon and Papert’s prediction this school made a commitment to personal computing and constructionism. The unifying principle was that every child in the school (from grades 5-12) would own a personal laptop computer on which they could work at school, at home, and across the curriculum with a belief that their ideas and work were being stored and manipulated on their own personal computer. Ownership of the laptop computer would reinforce ownership of the knowledge constructed with it. The personal computer is a vehicle for building something tangible outside of your head – one of the tenets of constructionism. By 1994, 2,000 MLC teachers and students had a personal laptop computer. This school, like most serious workplaces now has a computer ration of more than one computer per worker (teacher & student). Today, approximately 50,000 Australian school children have their own laptop. More and more American schools are embracing laptops as well.

Personal Computing – Personal Learning

Until recently, the notion of the PC and personal computing has escaped schools. Computer labs, special furniture and computer literacy curricula have been designed to make efficient use of scarce public resources. The potential benefits of using a word processor to write, edit and publish are rarely realized when access to the computer is limited and artificially scheduled. Laptops provide a personal space for creating, exploring, and collecting one’s own ideas, work, and knowledge in a more fluid manner. Pioneering schools like MLC adopted laptops for the following reasons:

The laptop is flexible, portable, personal and powerful
Students and teachers may use the computer whenever and wherever they need to. The laptop is a personal laboratory for intellectual exploration and creative expression. Learning extends beyond the walls and hours of the school.

The laptop helps to professionalize teachers
Teachers equipped with professional tools view themselves more professionally. Computers are much more likely to be integrated into classroom practice when every student has one.

Provocative models of learning will emerge
Teachers need to be reacquainted with the art of learning before they are able to create rich supportive learning environments for their students. The computer allows different ways of thinking, knowing and expressing ones own ideas to emerge. The continuous collection of learning stories serves as a catalyst for rethinking the nature of teaching and learning.

Gets schools out of the computer business
Laptops are a cost-effective alternative to building computer labs, buying special furniture and installing costly wiring. Students keep laptops for an average of three years, a turnover rate rarely achieved by schools. Built-in modems provide students with net access outside of school. The school can focus resources on projection devices, high-quality peripherals and professional development.

Since my work with the world’s first two “laptop schools” in 1990, I’ve helped dozens of similar schools (public and private) around the world make sense of teaching and learning in environments with ubiquitous computing. My own experience and research by others has observed the following outcomes for students and teachers.

Learner Outcomes

  • Students take enormous pride in their work.
  • Individual and group creativity flourishes.
  • Multiple intelligences and ways of knowing are in ample evidence.
  • Connections between subject areas become routine.
  • Learning is more social.
  • Work is more authentic, personal & often transcends the assignment.
  • Social interactions tend to me more work-related.
  • Students become more naturally collaborative and less competitive.
  • Students develop complex cooperative learning strategies.
  • Kids gain benefit from learning alongside of teachers.
  • Learning does not end when the bell rings or even when the assignment is due.

Teacher Outcomes

  • The school’s commitment to laptops convinces teachers that computers are not a fad. Every teacher is responsible for use.
  • Teachers reacquaint themselves with the joy and challenge of learning something new.
  • Teachers experience new ways of thinking, learning and expressing one’s knowledge.
  • Teachers become more collaborative with colleagues and students.
  • Authentic opportunities to learn with/from students emerge.
  • Sense of professionalism and self-esteem are elevated.
  • Thoughtful discussions about the nature of learning and the purpose of school become routine and sometimes passionate.
  • Teachers have ability to collaborate with teachers around the world.
  • New scheduling, curriculum and assessment structures emerge.

 

“I believe that every American child ought to be living in the 21st century… This is why I like laptops – you can take them home. I m not very impressed with computers that schools have chained to desks. I m very impressed when kids have their own computers because they are liberated from a failed bureaucracy …

You can’t do any single thing and solve the problem. You have to change the incentives; you’ve got to restructure the interface between human beings. If you start redesigning a learning system rather than an educational bureaucracy, if you have incentives for kids to learn, and if you have 24-hour-a-day, 7-day a week free standing opportunities for learning, you’re going to make a bigger breakthrough than the current bureaucracy. The current bureaucracy is a dying institution.” – U.S. Speaker of the House of Representatives, Newt Gingrich (Wired Magazine, August 1995)

When Seymour Papert and Newt Gingrich are on the same side of an issue, it is hard to imagine an opposing view. The fact that computers are smaller, cheaper and more powerful has had a tremendous impact on society. Soon that impact will be realized by schools. Laptop schools are clearly on the right side of history and will benefit from the experience of being ahead of trend.

Much has been said recently about the virtues of anytime anywhere learning. Laptops certainly can deliver on that promise. Integrated productivity packages may be used to write, manipulate data and publish across the curriculum. However, the power of personal computing as a potential force for learning and as a catalyst for school reform transcends the traditional view of using computers to “do work.” I encourage school leaders considering an investment in laptops to dream big dreams and conceive of ways that universal computing can help realize new opportunities for intellectual development and creative expression.

Coming to a Classroom Near You!

Oneseventh grader’s journey includes learning math through Scooby Doo
©2001 Gary S. Stager/Curriculum Administrator Magazine

A version of this was published in the August 2001 issue of Curriculum Administrator Magazine

At our annual family dinner to celebrate the end of another grueling school year, each of our children reflected upon the lessons learned and the obstacles overcome during the previous ten months. Our seventh-grade daughter, who will be referred to by the top-secret code name of Miffy, shared with us a new pedagogical strategy and use of educational technology not yet conceived of during my school years.

What was this innovation? Was it project-based learning, multiage collaboration, constructionism, online publishing, modeling and simulation? Nope, it was Disney films.

Yup, that’s right. Disney films (and several others too). The following is a partial list of the films shown this year during class time by my daughter’s teachers.

 

1st
period science

2nd
period math

3rd/4th
period language arts

6th
period physical education
(rainy days)

7th
period social studies

8th
period band

Young Frankenstein

 

The Nightmare Before Christmas

 

Contact

 

The Andromeda
Strain

Mulan

 

The Lion King

 

Babe

 

Mighty Joe Young

 

Aladdin

 

Cinderella

 

The Little Mermaid

 

MTV videos

 

VH1 videos

 

Scooby Doo

 

The Nightmare
Before Christmas

Angels in the
Outfield*

 

Little Giants*

 

The Big Green*

 

The Sandlot*

 

Planet of the Apes

 

Mighty Joe Young

 

The Nightmare
Before Christmas

Babe

 

Charlotte’s
Web

 

The Lion King II

 

Aladdin

 

The Road to
Eldorado

 

Dinosaur

A
Touched by an Angel episode dealing with racism & prejudice

 

Remember the Titans

Rocky & Bullwinkle

 

The Emperor’s
New Groove

 

Grease

 

Star Wars: Return
of the Jedi

 

Mr. Holland’s Opus

By now you must be marveling at the interdisciplinary properties of The Nightmare Before Christmas.You may also be wondering why there were no movies shown during fifth period. That’s because they don’t show movies during lunch.
Now I’m as fond of wasting time and goofing-off as the next guy, but Miffy was able to remember watching at least 34 films having no educational value whatsoever in one school year. In case you were thinking that they could be studying film criticism or visual storytelling you should know that they only watched half of most films because the periods are too short. Others were watched over several days.

This remarkable waste of class time occurred in a school where requests for meaningful projects, hands-on experiments, field-trips, drama and other productive learning experiences are abandoned because of an oft-repeated “lack of time.” Sure the standardized tests and top-down curricular pressures wreak havoc with creating a productive context for learning, but we can’t blame this one on Princeton or the President. Somewhere along the line educators determined that the demanding curriculum was elastic enough for the illegal showing of countless commercial films.

My Daughter the Rodeo Clown

Miffy also told me that due to the SAT-9 exams, Career Day had been cancelled. I’m not sure which part of that statement is most tragic, so let’s state it in the form of a standardized test question.

Which is most pathetic?

a)    Canceling Career Day because of SAT-9  (standardized) testing

b)    Career Day

c)    The school’s remedy for having cancelled career day

The ingenious remedy chosen was to spend much of the last week of school watching a series of instructional videos called, “Real Life 101.” While hardly as educational as Mulan, these shows turned out to be far more entertaining. The audience was repeatedly reminded, “you don’t need a college degree for this career, but it wouldn’t hurt! “

The hosts of the series, Maya, Megan, Zooby and Josh (there always seems to be a Josh) introduced exciting career options for the high-tech interconnected global economy of the 21st century. The career options included the following: Snake handler, projectionist, naval explosive expert, skydive instructor, rafting instructor, diamond cutter, roller coaster technician, exterminator, auctioneer, alligator wrestler and my personal favorite growth industry – rodeo clown!

You can’t make this stuff up! The worksheet that followed the Career Day substitute asked each child to rank these careers in order of preference and write a few sentences explaining their number one choice.

If I wanted my children to watch television, I’d let them stay home. At least at home they could watch something educational like “Behind the Music: The Mamas and the Papas”or learn about Beat poetry from the “Many Loves of Dobie Gillis. ”  At least then they would have a chance to learn something more than the unfortunate lessons being modeled by their schools.

*My kid explained that all of these films share the same plot about a group of fat kids working hard together to win the big game – somewhere in there a lesson for us all.

Before accepting overtesting as inevitable, try debating the issue with parents and students
By Gary S. Stager, Ph.D.
Originally published in District Administration Magazine – July 2003

Our schools are in the midst of a mass panic not seen since the swine flu epidemic–standardized testing. We are swept up in a wave of “the tests are important,” “parents demand accountability,” and “they make us do it.” This uncritical groupthink will destroy public education unless we wake up, form alliances and tell the public the truth.

Democrats and Republicans alike caught a bad case of testing fever and voted overwhelmingly for No Child Left Behind, perhaps the greatest intrusion of the federal government into local education in history. NCLB will compel states to test their students every year from grades 2-12 in order to rank schools and shut many of them down. Our Proctor-in-Chief, George W. Bush, is extending the joys of standardized testing into Head Start.

Since many administrators and school board members have no idea how many standardized tests they need to administer, NCLB will undoubtedly add additional tests and draconian consequences to a school year already diminished by weeks of testing and test preparation.

Without so much as a public debate on what we would want for our schools, testing mania has been allowed to spread like a plague on our educational process. If some testing is good, more is better. If the youngest students can’t yet hold a pencil or read, of course they can bubble-in answers to math problems for several hours at a time. Head Start should be a reading program. You got a problem with three-year-olds reading? Why then, you must suffer from “the bigotry of low expectations.” The end of recess does not affect obesity. Replacing art and music with scripted curricula won’t lead to increased school violence or discipline problems. Down is up, black is white.

Education Week’s annual report “Technology Counts,” states an alarming trend–schools are not spending enough money on using computers for the purposes of standardized testing! Apparently, the years I’ve spent helping schools use computers to enhance learning have been wasted. It never occurred to me that computers should be used to replace #2 pencils and scan sheets. Tech-based testing reminds me of the old Gaines Burger commercial that asked, “Is your dog getting enough cheese?”

The Education Week “research” is replete with charts and graphs designed to whip child-centered educators into line. EdWeek loves winners and losers nearly as much as the testing industry. Coincidentally, a giant publisher of standardized tests, textbooks and test preparation systems, funded their “study.”

In such a climate of confusion and hysteria, educators feel powerless. Parents trust that you will do the right thing. Misconceptions about high-stakes testing are amplified by an unwillingness to engage the community in conversation.

Getting Active
Inspired by Juanita Doyon’s terrific new book, Not With Our Kids You Don’t: Ten Strategies to Save Our Schools, and a desire to show my kids that you can make a difference, I decided to try my hand at activism.

I designed a flier answering some of the myths about standardized testing and telling parents that California state law allows them to exempt their child from the STAR tests. Two days before testing was to begin I stood in front of my daughter’s high school and passed out 150 fliers in about 10 minutes. I felt a bit creepy, but the kids told me that I was cool (a first).

I have since learned that 46 students opted out of the tests. That’s a one-third hit-rate. Not since the Pet Rock has a marketing effort been so successful with so little effort Think about it–a kid had to take a piece of paper from a stranger, bring it home, convince his parents to write a letter disobeying the wishes of the school and bring the letter back to school the next day. Perhaps the public isn’t as hungry for increased accountability as we have been led to believe?

One parent said she didn’t know her tax money was spent on standardized testing. Can you imagine the public being less engaged in a matter so important?

It is incumbent upon each of us to tell parents what we know and engage the community in serious discussions about schooling. We may find that we have many more allies than there are politicians telling us what’s best for kids.


I created Pencilsdown.org around 2000, long before today’s opt-out movement. It has been inactive for a number of years, but you may find a copy of the opt-out form I distributed back in 2003 here.

The year following my initial opt-out activism,I wrote a letter to the editor of the local paper urging parents to opt-out. Fearing a loss of federal money as a result of not making AYP due to testing resistance, the Torrance Unified School District lied to parents about the legitimacy of the testing process. I responded with a freedom of information request about funding, personnel, policy, costs and time dedicated to STAR testing. This tied the district office in knots for months. If I can find the request, I will share it.

Here is a list of recommended books for parents and educators interested in opposing standardized testing.

Computationally-Rich Activities for the Construction of Mathematical Knowledge – No Squares Allowed
©1998 Gary S. Stager with Terry Cannings
This paper was published in the proceedings of the 1998 National Educational Computing Conference in San Diego

Based on a book chapter: Stager, G. S. (1997). Logo and Learning Mathematics-No Room for Squares. Logo: A Retrospective. D. L. Johnson and C. D. Maddux. Philadelphia, The Haworth Press: 153-169.

Abstract
The NCTM Standards state that fifty percent of all mathematics has been invented since World War II. (National Council of Teachers of Mathematics, 1989) Few if any of these branches of mathematical inquiry have found their way into the K-12 curriculum. This is most unfortunate since topics such as number theory, chaos, topology, cellular automata and fractal geometry may appeal to students unsuccessful in traditional math classes. These new mathematical topics tend to be more contextual, visual, playful and fascinating than adding columns of numbers or factoring quadratic equations. Logo provides a powerful medium for rich mathematical explorations and problem solving while providing a context in which students may fall in love with the beauty of mathematics. The examples in this paper are intended to spark the imaginations of teachers and explore several mathematical areas ripe for Logo-based investigations.

Introduction
While it may seem obvious to assert that computers are powerful computational devices, their impact on K-12 mathematics education has been minimal. (Suydam, 1990) More than a decade after microcomputers began entering schools, 84% of American tenth graders said they never used a computer in math class.(National Center for Educational Statistics, 1984) Computers provide a vehicle for “messing about” with mathematics in unprecedented learner-centered ways. “Whole language” is possible because we live in a world surrounded by words we can manipulate, analyze and combine in infinite ways. The same constructionist spirit is possible with “whole math” because of the computer. In rich Logo projects the computer becomes an object to think with – a partner in one’s thinking that mediates an ongoing conversation with self.

Many educators equate Logo with old-fashioned turtle graphics or suggest that Logo is for the youngest of children. Neither of these beliefs is true. Although traditional turtle graphics continues to be a rich laboratory in which students construct geometric knowledge, Logo is flexible enough to explore the entire mathematical spectrum. Logo continues to satisfy the claim that it has no threshold and no ceiling. (Harvey, 1982) Best of all, Logo provides a context in which children are motivated to solve problems and express themselves.

The National Council of Teachers of Mathematics Curriculum and Evaluation Standards for School Mathematics recognizes Logo as a software environment that can assist schools in meeting the goals for the improvement of mathematics education. In fact, Logo is the only computer software specifically named in the document.

The Goals of the NCTM (1984) Standards for All Students

  1. learn to value mathematics
  2. become confident in their ability to do mathematics
  3. become mathematical problem solvers
  4. learn to communicate mathematically
  5. learn to reason mathematically

The NCTM Standards state that fifty percent of all mathematics has been invented since World War II. (National Council of Teachers of Mathematics, 1989) Few if any of these branches of mathematical inquiry have found their way into the K-12 curriculum. This is most unfortunate since topics such as number theory, chaos, topology, cellular automata and fractal geometry may appeal to students unsuccessful in traditional math classes. These new mathematical topics tend to be more contextual, visual, playful and fascinating than adding columns of numbers or factoring quadratic equations. Logo provides a powerful medium for rich mathematical explorations and problem solving while providing a context in which students may fall in love with the beauty of mathematics.

Computer microworlds such as Logo turtle graphics and the topics of constructions and loci provide opportunities for a great deal of student involvement, In particular, the first two contexts serve as excellent vehicles for students to develop, compare and apply algorithms. (National Council of Teachers of Mathematics, 1989, p. 159)

The examples in this paper are intended to spark the imaginations of teachers and explore several mathematical areas ripe for Logo-based investigations. The project ideas use MicroWorlds, the latest generation of Logo software designed by Seymour Papert and Logo Computer Systems, Inc. MicroWorlds extends the Logo programming environment through the addition of an improved user interface, multiple turtles, buttons, text boxes, paint tools, multimedia objects, sliders and parallelism.

Parallelism allows the computer to perform more than one function at a time. Most computer-users have never experienced parallelism or the emergent problem solving strategies it affords. MicroWorlds makes this powerful computer science concept concrete and usable by five year-olds. The parallelism of MicroWorlds makes it possible to explore some mathematical and scientific phenomena for the first time. Parallelism also allows more conventional problems to be approached in new ways.

Euclidian Geometry
One source of inspiration for student Logo projects is commercial software. Progressive math educators have found software like The Geometric Supposer and the more robust Geometers’ Sketchpad to be useful tools for exploring Euclidian geometry and performing geometric constructions. I noticed that while teachers may use these tools as extremely flexible blackboards, kids can pull down a menu and request a perpendicular bisector to be drawn without any deeper understanding than if the problem was solved with pencil and paper.

Could middle or high school students design collaboratively their own such tools? If so, they would gain a more intimate understanding of the related math concepts because of the need to “teach” the computer to perform constructions and measurements. Throughout this process, teams of students are asked to brainstorm questions, share what they know and define paths for further inquiry. Students as young as seventh grade have developed their own geometry toolkits in MicroWorlds.

Much of learning mathematics involves naming actions and relationships. Logo programming enhances the construction of mathematical knowledge through the process of defining and debugging Logo procedures. The personal geometry toolkits designed by students are used to construct geometric knowledge and questions worthy of further investigation. As understanding emerges the tool can be enhanced in order to investigate more advanced problems.

At the beginning of this project students are given a few tool procedures to start with. These procedures are designed to:

  1. drop a point on the screen (each point is a turtle and in MicroWorlds every turtle knows where it is in space)
  2. compute the distance between two points


With these two sets of tool procedures students can create tools necessary for generating geometric constructions, measuring constructions and comparing figures. MicroWorlds’ paint tools may be used to color-in figures and to draw freehand shapes. The procedural nature of Logo allows for higher level functions to be built upon previous procedures. Figures 1a, 1b & 1c are screen shots of one student’s geometry toolkit.

Probability and Chance
Children use MicroWorlds to explore probability via traditional data collection problems involving coin or dice tosses and in projects of their own design. Logo’s easy to use RANDOM function appears in the video games, races, board games and sound effects of many students.

Perhaps the best use of probability I have encountered in a MicroWorlds project is in a project I like to call, “Sim-Middle Ages.” In this project a student satisfied the requirements for the unit on medieval life in a quite imaginative fashion. Her project allows the user to specify the number of plots of land, number of seeds to plant and the number of mouths to feed. MicroWorlds then randomly determines the amount of plague, pestilence, rainfall and rate of taxation to be encountered by the farmer.

On the next page there are two buttons. One button announces if you live or die in the middle ages and the other tells why, based on the user-determined and random variables. You may then go back and adjust any of the values in an attempt to survive. (figures 2a, 2b and 2c)




Things happen in the commercial simulations, but users often don’t understand the causality. In student-created simulations, students use mathematics in a very powerful way. They develop their own algorithms to model historical or scientific phenomena. This type of project can connect mathematics with history, economics, physical science and life science in very powerful ways.

Number Theory
“Number theory, at one time considered the purest of pure mathematics is simply the study of whole numbers, including prime numbers. This abstract field, once a playground for a few mathematicians fascinated by the curious properties of numbers, now has considerable practical value… in fields like cryptography.”(Peterson, 1988) Software environments, such as MicroWorlds, provide a concrete environment in which students may experiment with number theory. “Experimental math” projects benefit from Logo’s ability to control experiments, easily adjust a variable and collect data. Kids control all of the variables in an experiment and can swim around in the beaker with the molecules. Intellectual immersion in large pools of numbers is possible due to computer access. The scientific method comes alive through mathematical experimentation.

A fascinating experimental math problem to explore with students is known as the 3N problem. The problem is also known by several other names, including: Ulam’s conjecture, the Hailstone problem, the Syracuse problem, Kakutani’s problem, Hasse’s algorithm, and the Collatz problem. The 3N problem has a simple set of rules. Put a number in a “machine” (Logo procedure) and if it is even, cut in half – if it is odd, multiply it by 3 and add 1. Then put the new value back through the machine. For example, 5 becomes 16, 16 becomes 8, becomes 4, 4 becomes 2, 2 becomes 1, and 1 becomes 4. Mathematicians have observed that any number placed into the machine will eventually be reduced to a repeating pattern of 4…2…1…

While this is an interesting pattern, what can children explore? Well, it seems that some numbers take a long time to get to 4…2…1… I call each of the numbers that appear before 4, a “generation.” I often expose students to this problem by trying a few starting numbers and leading a discussion. Typing SHOW 3N 1 takes 1 generation to get to 4. Students may then predict that the number 2 will take two generations and they would be correct. They may then hypothesize that the number entered will equal the number of generations required to get to 4. However, 3N 3 takes 5 generations! I then ask, “how can we modify our hypothesis to save face or make it look like we were at least partially right?” Kids then suggest that the higher the number tried, the longer it will take to get to 4…2…1… They may even construct tables of the previous data and make numerous predictions for how the number 4 will behave only to find that 4 takes zero generations (for obvious reason that it is 4).

I then tell the class that they should find a number that takes a long time to get to 4…2…1… I do not specify what I mean by a “long time” in order to let the young mathematicians agree on their own limits. The notion of limits is a powerful mathematical concept which helps focus inquiry and provides the building blocks of calculus. Students often test huge numbers before realizing that they need to be more deliberate in their experimentation. The working definition of “long time” changes as the experiment continues. Eleven generations may seem like a long time until a group of kids test the number 27. Gasps and a chorus of wows can be heard when 27 takes 109 generations. Then I ask the class to tell me some of the characteristics of 27. Students often list some of the following hypotheses:

Its factors are 1, 3, 9, 27
It’s odd
It’s 3 * 3 * 3 (an opportunity to introduce the concept of cubed numbers)
The sum of the digits = 9
The number is greater than 25
 

We then test each of the hypotheses and discard most of them. The cubed number hypothesis is worthy of further investigation. If we test the next cubed number, 4, with SHOW 3N 4 * 4 * 4 we find that it does not take long to get to 4. One student may suggest that only odd perfect cubes take a long time. I then suggest that the other students find a way to disprove this hypothesis by finding either an odd perfect cube that doesn’t take a long time or an even cube that does. Both exist.

to 3n :number
print :number
ifelse even? :number [3n :number / 2] [3n (:number * 3) + 1]
end

to even? :number
output 0 = remainder :number 2
end

A simple tool procedure may be added to count the number of generations for the “researcher.” The more you play with this problem, the more questions emerge. A bit more programming allows you to ask the computer to graph the experimental data or keep track of numbers that take longer than X generations to reach 4…2…1… Running such experiments overnight may lead to other interesting discoveries, like the numbers 54 and 55 each take 110 generations. What can adjacent numbers have in common? 108, 109 and 110 each take 111 generations. Could this pattern have something to do with place value? How could you find out? (see figures 4a & 4b)

The joy in this problem for kids and mathematicians is connected to the sense that every time you think you know something, it may be disproven. This playfulness can motivate students to view mathematics as a living discipline, not as columns of numbers on a worksheet. For many students, problems like 3N provide a first opportunity to think about the behavior of numbers. “For the most part, school math and science becomes the acquisition of facts that have been found by people who call themselves scientists.” (Goldenberg, 1993) Logo and experimental math provides another opportunity to provide children with authentic mathematical experiences.

Fractal Geometry and Chaos Theory
The contemporary fields of fractal geometry and chaos theory are the result of modern computation. Many learners find the visual nature of fractal geometry and the unpredictability of chaos fascinating. Logo’s turtle graphics and recursion make fractal explorations possible. The randomness, procedural nature and parallelism of MicroWorlds brings chaos theory within the reach of students.

Fractals are self-similar shapes with finite area and infinite perimeter. Fractals contain structures nested within one another with each smaller structure a miniature version of the larger form. Many natural forms can be represented as fractions, including ferns, mountains and coastlines.

Chaos theory suggests that systems governed by physical laws can undergo transitions to a highly irregular form of behavior. Although chaotic behavior appears random, it is governed by strict mathematical conditions. Chaos theory causes us to reexamine many of the ways in which we understand the world and predict natural phenomena. Two simple principles can be used to describe Chaos theory:

  1. From order (a predictable set of rules), chaos emerges.
  2. From a random set of rules, order emerges.

MicroWorlds may be used to explore both chaos and fractal geometry simultaneously. Figure 3shows two similar fractals called the Sierpinski Gasket. The fractal on the left is created by a complex recursive procedure. The fractal on the right is generated by a seemingly random algorithm discovered by Michael Barnsley of Georgia Institute of Technology. The Barnsley Fractal is created by placing three dots on the screen and then randomly choosing one of three points, going half way towards it and putting another dot. This process is repeated infinitely and a Sierpinski Gasket emerges. In fact, if you grab the turtle from the “chaos fractal” and move it somewhere else on the screen, it immediately finds its way back into the “triangle” and never leaves again. The multiple turtles and parallelism of MicroWorlds makes it possible to explore the two different ways of generating a similar fractal simultaneously. Experimental changes can always be made to the procedures and the results may be immediately observed.

Animation
One of the most attractive aspects of MicroWorlds is its ability to create animations. Students are excited by the ease with which they can create even complex animations. MicroWorlds animations require the same mathematical and reasoning skills as turtle graphics. The difference is that the turtle’s pen is up instead of down and the physics of motion comes into play. Multiple turtles and “flip-book” style animation enhance planning and sequencing skills. Even the youngest students use Cartesian coordinates and compass headings routinely when positioning turtles and drawing elaborate pictures.

Perhaps the best part of MicroWorlds animation is that the student-created animation and related mathematics are often employed in the service of interdisciplinary projects. Using animation to navigate a boat down the ancient Nile, simulate planetary orbits, design a video game or energize a book report provides a meaningful context for using and learning mathematics.

Functions and Variables
Logo’s procedural inputs and mathematical reporters give kids concrete practice with variables. Functions/reporters/operations are easy to create in MicroWorlds and can even be the input to another function. For example, the expression SHOW DOUBLE DOUBLE DOUBLE 5 or REPEAT DOUBLE 2 [fd DOUBLE DOUBLE 20 RT DOUBLE 45] are possible by writing a simple procedure, such as:

to double :number
output :number * 2
end

Many teachers are unaware of Logo’s ability to perform calculations (up through trigonometric functions) in the command center or in procedures. SHOW 3 * 17 typed in the command center will display 51 and REPEAT 8 [fd 50 rt 360 / 8] will properly draw an eight-sided regular polygon.

A favorite project I like to conduct with fifth and sixth graders creates a fraction calculator. First we decide to represent fractions as a (Logo) list containing a numerator and a denominator. Then we write procedures to report the numerator and denominator of a fraction. From there, the class can easily collaborate to write a procedure which adds two fractions. Some kids can even make the procedure add fractions with different denominators. From there, all of the standard fraction operations can be written as Logo procedures by groups of children. The next challenge the kids typically tackle is the subtraction of fractions.

One day, a fifth grader, Billy, made an interesting discovery while testing his subtraction “machine.” Billy typed, SHOW SUBTRACT [1 3] [2 3] (meaning 1/3 – 2/3), and -1 3 appeared in the command center. I noticed the negative fraction and mentioned that when I was in school we were taught that fractions had to be positive. Therefore, there is no such thing as a negative fraction.

Billy exclaimed, “Of course there is! The computer gave one to us!” This provoked a discussion about “garbage in – garbage out,” the importance of debugging and the need for conventions agreed upon by mathematicians and scientists. We even discussed the difference between symbols and numbers. Billy listened to this discussion impatiently and announced, “That’s ridiculous because I can give you an example of a negative fraction in real-life.”

Billy said, “I have a birthday cake divided into six slices and eight people arrive at my party. I’m short two sixths of a cake – negative 2/6!” He went on to say, “If the computer can give us a negative fraction and I can provide a real-life example of one, then there must be negative fractions.” The hazy memory of my math education diminished the confidence required to argue with this budding mathematician. Instead, I agreed to do some research.

I looked in mathematics dictionaries, but found more ambiguity than clarity. I also spent several weeks consulting with math teachers. Most of these people either dismissed the question of negative fractions as silly or complained that they lacked the time to adequately deal with Billy’s dilemma. After a bit more time, I ran into a university mathematician at a friend’s birthday party. Roger did not dismiss Billy’s question. Instead he asked for my email address. The next morning the following email message awaited me.

Date: Sun, 06 Nov 1994 09:52:44 -0400 (EDT)
Subject: fractions
To: gstager@pepperdine.edu

Dear Gary,

It was fun to have a chat at Ihor’s party. This morning I got out my all time favorite source of information on things worthwhile, the Ninth Edition of the Encyclopedia Britannica. (With its articles by James Clerk Maxwell et al.) It is very clear. Fractions come about by dividing unity into parts, and are thus by definition positive.

Interesting.
Yours,
Roger


Now what should a teacher tell Billy? In the past, you might hope that he forgot the matter. Today, Billy can post his discovery on the Internet and engage in serious conversation – perhaps even research with other mathematicians. Access to computers and software environments like MicroWorlds makes it possible for children to make discoveries that may be of interest to mathematicians and scientists. It is plausible that kids can contribute to the construction of knowledge deemed important by adults.

New Data Structures
MicroWorlds has two new data structures that contribute to mathematical learning. With the click of the mouse, sliders and text boxes can be dropped on the screen. As input devices, sliders are visual controls that adjust variables. Each slider has a name and a range of numbers assigned to it. Like a control on a mixing board the slider can be set to a number in that range. The slider’s value can then be sent to a turtle whose speed or orientation is linked to the value of the slider. The slider can also be used to set the values of variables used in a simulation.

Sliders may also be used as output devices. A procedure can change the value of a slider to indicate an experimental result. If a slider named, counter, is in a MicroWorlds project then the command, SETCOUNTER COUNTER + 1, can be used to display the results of incrementing the counter.

MicroWorlds text boxes also function as both input and output devices. A text box is like a little word processor drawn on the MicroWorlds page to hold text. Text boxes also have names that when evoked report their contents. If a user types the number 7 in a text box named FOO, then typing SHOW FOO * 3 will display 21 in the command center. FD FOO * 10 will move the turtle forward 70 steps. The command, SETFOO 123 will replace the contents of the text box, FOO, with 123. Therefore, text boxes may be used as experimental monitors or calculator displays. Constructing a garden-variety calculator with a text box and MicroWorlds buttons or turtles is deceptively simple, but provides one illustration of how text boxes could be used in a mathematical context.

A basic spreadsheet can be built in MicroWorlds with just one line of Logo code. If three text boxes are named, cell1, cell2 and total, then a button with the instruction, SETTOTAL CELL1 + CELL2, will put the sum of the first two cells in the third. Making the button run many times will cause the “spreadsheet” to perform automatic calculations. A bit more programming will allow you to check for calculation efforts, graph data or cause a turtle to change its behavior based on the result of a calculation. Building a model spreadsheet helps students understand how a commercial spreadsheet works, develop computation skills and add automatic calculation to their Logo toolbox.

Instructional Software Design
Children can use Logo as a design environment for teaching others mathematical concepts. Idit Harel’s award-winning research (Harel, 1991) and the subsequent research by her colleague, Yasmin Kafai (Kafai, 1995), demonstrated that when students were asked to design software (in LogoWriter or MicroWorlds) to teach other kids about “fractions” they gained a deeper understanding of fractions than children who were taught fractions and Logo in a traditional manner. These students also learn a great deal about design, Logo programming, communication, marketing and problem solving. Harel and Kafai have confirmed that children learn best by making connections and when actively engaged in constructing something meaningful. Their research provides additional evidence of Logo’s potential as an environment for the construction of mathematical knowledge.

Conclusion

Increased access to computers and imaginative teachers will open up an infinite world of possibilities for Logo learning. Software environments, such as MicroWorlds provide children with an intellectual laboratory and vehicle for self-expression. MicroWorlds inspires serendipitous connections to powerful mathematical ideas when drawing, creating animations, building mathematical tools or constructing simulations.

Excursions into the worlds of number theory, fractal geometry, chaos and probability rely on MicroWorlds’ ability to act as lab assistant and manager. Paul Goldenberg suggests that it is difficult to test out ideas unless one has a slave stupid enough not to help. (Goldenberg, 1993) The computer plays the role of lab assistant splendidly, yet the student still must do all of the thinking. MicroWorlds makes it possible to manage large bodies of data by running tedious experimental trials millions of times if necessary, collecting data and displaying it in numerical or graphical form. The procedural nature of MicroWorlds makes it possible to make small changes to an experiment without having to start from scratch.

MicroWorlds provides schools with a powerful software package flexible enough to grow with students. In days of tight school budgets it is practical to embrace a software environment with which students can address the demands of numerous subject areas. The sophistication with which students confront intellectual challenges improves along with their fluency in MicroWorlds.

Seymour Papert was horrified at how the simple example of commanding a turtle to draw a house, depicted in Mindstorms, became “official Logo curriculum” in classrooms around the world. However, providing students with a rich “mathland” in which to construct mathematical knowledge has always been one of the goals in the design and implementation of Logo. This paper attempts to provide simple examples of how MicroWorlds may be used to explore a number of mathematical concepts in a constructionist fashion. Those interested in additional ideas should read (Abelson & diSessa, 1981), (Cuoco, 1990), (Clayson, 1988), (Goldenberg & Feurzeig ,1987), (Lewis, 1990) and (Resnick, 1995). More detailed examples and teacher materials related to this paper are available on my World-Wide-Web site at: http://moon.pepperdine.edu/~gstager/home.html.

References

  1. Abelson, H., & diSessa, A. (1981). Turtle Geometry. Cambridge, MA: MIT Press.
  2. Clayson, J. (1988). Visual Modeling with Logo. Cambridge, MA: MIT Press.
  3. Clements, D.H. (1991). Logo in Mathematics Education: Effects and Efficacy. Stevens Institute of Technology Conference Proceedings – Computer Integration in Pre-College Mathematics Education: Current Status and Future Possibilities, April 24, 1991. Hoboken, NJ: Stevens Institute of Technology/CIESE.
  4. Cuoco, A. (1990). Investigations in Algebra. Cambridge, MA: MIT Press.
  5. Goldenberg, E.P. (1993). Linguistics, Science, and Mathematics for Pre-college Students: A Computational Modeling Approach.Revised from Proceedings, NECC ‘89 National Educational Computing Conference, Boston, MA. June 20-22, pp. 87 -93. Newton, MA: Educational Development Center.
  6. Goldenberg, E.P. (1989). “Seeing Beauty in Mathematics: Using Fractal Geometry to Build a Spirit of Mathematical Inquiry.” Journal of Mathematical Behavior, Volume 8. pages 169-204.
  7. Goldenberg, E.P., & Feurzeig, W. (1987). Exploring Language with Logo Cambridge, MA: MIT Press.
  8. Harel, I. (1991). Children Designers: Interdisciplinary Constructions for Learning and Knowing Mathematics in a Computer-Rich School. Norwood, NJ: Ablex Publishing Corporation.
  9. Harel, I. & Papert, S. (editors) (1991). Constructionism. Norwood, NJ: Ablex Publishing Corporation.
  10. Harvey, B. (1982). Why Logo? Byte, Vol. 7, No.8, August 1982, 163-193.
  11. Harvey, B. (1985-87). Computer Science Logo Style, Volumes 1-3. Cambridge, MA: MIT Press.
  12. Kafai, Y. (1995) Minds in Play – Computer Design as a Context for Children’s Learning. Hillsdale, NJ: Lawrence Erlbaum and Associates.
  13. Lewis, P. (1990). Approaching Precalculus Mathematics Discretely. Cambridge, MA: MIT Press.
  14. National Council of Teachers of Mathematics. (1989). Curriculum and Evaluation Standards for School Mathematics. Reston, VA: NCTM.
  15. Papert, S. (1980). Mindstorms: Children, Computers, and Powerful Ideas. (Second Edition, 1993) New York: Basic Books.
  16. Peterson, I. (1988). The Mathematical Tourist – Snapshots of Modern Mathematics. NY: W.H. Freeman and Company.
  17. Poundstone, W. (1985). The Recursive Universe… Chicago: Contemporary Books.
  18. Resnick, M. (1995). Turtles, Termites and Traffic Jams – Explorations in Massively Powerful MicroWorlds. Cambridge, MA: MIT Press.
  19. Silverman, B. (1987). The Phantom Fishtank: An Ecology of Mind. Montreal: Logo Computer Systems, Inc. (book with software for Apple II or MS-DOS)
  20. Stager, G. (October, 1988). “A Microful of Monkeys.” The Logo Exchange .
  21. Stager, G. (1990). “Developing Scientific Thought in a Logo-based Environment.” Proceedings of the World Conference on Computers in Education. Sydney, Australia: IFIP.
  22. Stager, G. (1991). “Becoming a Scientist in a Logo-based Environment.” Proceedings of the Fifth International Logo Conference. San José, Costa Rica: Fundacion Omar Dengo.
  23. Suydam, M. N. (1990). Curriculum and Evaluation Standards for Mathematics Education. (ERIC/SMEAC Mathematics Education Digest No. 1, 1990) Columbus, OH: ERIC Clearinghouse for Science, Mathematics and Environmental Education. (ERIC Document Reproduction Service No. ED319630 90).

 

Rufus T. Firefly
President: Huxley College

I often explain to graduate students that I don’t play devil’s advocate or any other clever games. Just because I may say something unsaid by others, does not mean that I don’t come to that perspective after careful thought and introspection.

Being an educator is a sacred obligation. Those of us who know better, need to do better and stand between the defenseless children we serve and the madness around us. If a destructive idea needs to be challenged or a right defended, I’ll speak up.

My career allows me to spend time in lots of classrooms around the world and to work with thousands of educators each year. This gives me perspective. I am able to identify patterns, good and bad, often before colleagues become aware of the phenomena. I have been blessed with a some communication skills and avenues for expression. I’ve published hundreds of articles and spoken at even more conferences.

People seem interested in what I have to say and for that I am extremely grateful.

The problem is that I am increasingly called upon to argue against a popular trend. That tends to make me unpopular. In the field of education, where teachers are “nice,” criticism is barely tolerated. Dissent is seen as defect and despite all of my positive contributions to the field, I run the risk of being dismissed as “that negative guy.”

Recently, I have written or been quoted on the following topics:

I’ve also written against homework, NCLB, RTTT, Michelle Rhee, Eli Broad, Joel Klein, standardized testing, Education Nation, Common Core Curriculum Standards, Accelerated Reader, merit pay, Arne Duncan, union-busting, Cory Booker, Teach for America, Australian Prime Minister Julia Gillard, mayoral control, the ISTE NETs, Hooked-on-Phonics, President Obama’s education policies, etc… You get the idea.

The “Jetbow” sandwich at NY’s Carnegie Deli

These are perilous times for educators. When once bad education policy was an amuse-bouche you could easily ignore, it has become a Carnegie Deli-sized shit sandwich. Educators are literally left to pick their own poison, when choice is permitted at all. If I take a stand against a fad or misguided education policy, my intent is to inform and inspire others to think differently or take action.

So why, pray tell am I boring my dear readers with my personal angst? An old friend and colleague just invited me to write a magazine article about the “Flipped Classroom.” Sure, I think the flipped classroom is a preposterous unsustainable trend, masquerading as education reform, in which kids are forced to work a second unpaid shift because adults refuse to edit a morbidly obese curriculum. But….

The question is, “Do I wish to gore yet another sacred cow?” Is speaking truth to power worth the collateral damage done to my career?

In the 1960s, the great Neil Postman urged educators to hone highly-tuned BS and crap detectors. Those detectors need to be set on overdrive today. I’m concerned that I’m the only one being burned.

What to do? What to do?

I don’t know what they have to say
It makes no difference anyway
Whatever it is, I’m against it!
No matter what it is
Or who commenced it
I’m against it!

Your proposition may be good
But let’s have one thing understood
Whatever it is, I’m against it!
And even when you’ve changed it
Or condensed it
I’m against it!

Whatever It Is, I'm Against It
by Harry Ruby & Bert Kalmar From the Marx Bros. film "Horse Feathers" (1932) 

 

Girls and Technology – Overcoming Myths and Malpractice1
Version 1.0
Presented at the 2002 Alliance For Girl Schools
Girls and Technology Conference
© May 2002 Gary S. Stager

It is indeed an honor to speak at this conference and share my experiences and expectations with such an august audience. My qualifications for this conference could be based on my two decades of work with technology and kids, the work I did in the early days of school laptop computing right here in Australia or the fact that I am the parent of two teenage girls. I originally suggested that this talk be titled, “I’m not sure why Dale Spender hates me,” based on my experience as Ms. Spender’s human piñata at an MLC dinner and the ironic fact that she went on to quote me extensively in one of her books.

The theme of this conference, girls and technology, implies a problem. Neither girls nor technology are the problem. If a problem does exist, it is with the men and women commonly identified as educators and to a lesser extent, parents. It is the intellectual timidity, professional indolence, imagination gap and what Seymour Papert calls, idea aversion that prevents us from meeting the needs of all digital age children. The greatest number of victims of such idea aversion may be girls since for reasons real and imagined. The prevailing myths that girls don’t like computers; girls need different technology; girls should learn to criticize technology; girls have adequate access and ample role models; school leaders are qualified to make technological decisions; and schools should be used as social sieves lead to the creation of pedagogical decisions ultimately detrimental to girls themselves.

Microcomputers and the global information infrastructure offer unprecedented opportunities for expanding the learning community and for children to engage with powerful ideas. The choice is between an increasingly irrelevant system of schooling or the realization of John Dewey’s dream for a learning environment in which children can achieve their full creative and intellectual potential. Computational and communication technology may be used as an intellectual laboratory and vehicle for self-expression or as a tool for oppression. The first option makes schools better places for teachers and kids to learn, the second will hasten the demise of school’s monopoly on education.

It would be a shame if we missed the chance to revolutionize the learning environment if we were simply ignorant. It would be a sin to ignore the remarkable possibilities demonstrated right under our noses in order to preserve some quaint notion of 19th century education. We know how the combination of elevated expectations, respect for epistemological pluralism, a dash of creativity and ubiquitous can produce a learning renaissance because we’ve seen it in schools a tram-ride away.

The most important educational technology innovation in the past two decades began at Methodist Ladies’ College in 1989 when David Loader, a giant in girls’ education, committed his school to the proposition that every child should own a personal laptop computer. This was never intended as a stunt, experiment or project. David noticed that computers were getting more portable and affordable while anticipating that such a bold investment would pay great dividends for educators concerned with making schools what James Britton would describe as, “more hospitable to the intentions of children.”

Six years before the World Wide Web, Loader shared these provocative thoughts with his school community.

Apparently the sun cannot rise in present schools…

Unlike David Suzuki who dismisses computers as information processors, we see knowledge not so much as being processed but as being constructed in the classroom. John Dewey’s observation that the content of the lesson is the less important thing about learning, is relevant (here). – David Loader

Almost every child, on the first day he sets foot in a school building, is smarter, more curious, less afraid of what he doesn’t know, better at finding and figuring things out, more confident, resourceful, persistent and independent, than he will ever be again in his schooling – John Holt

This was the shot heard ‘round the world. Soon after laptops were delivered to MLC, impressive student LogoWriter projects inspired teachers to rethink their notions of curriculum, assessment, scheduling and most importantly, the under-appreciated learning abilities of their students. Humanities teachers demanded long uninterrupted blocks of time to accomplish interdisciplinary collaborative projects. French teachers ventured into the uncharted waters of maths classrooms, boatloads of educators from around the world visited Kew and the idea of Marshmead was born.

Steve Costa, was patient zero – the first teacher in history to teach a class of girls each equipped with a laptop. Steve’s extraordinary teaching abilities coupled and willingness to share his talents with colleagues has made his classroom one of the most visited in the world. Not only did Steve Costa possess the confidence and courage to invent the future, he has demonstrated a remarkable focus over the past thirteen years. He has not been seduced by the latest technological fad or gimmick, but has continued to help students maximize the potential of their minds and computers by remaining committed to the hard fun of programming in Logo (MicroWorlds). Steve’s work continues to inspire me. What he and his girls have accomplished is remarkable. If there were any justice, Mr. Costa would appear on an Australian postage stamp. He is arguably one of the most important teachers in this nation’s history.

I am delighted that Steve Costa and David Loader will keynote a conference in Maine, USA this August between Alan Kay, the inventor of the personal computer, and Seymour Papert, the educator who predicted thirty-five years ago that every child would have a personal computer. Maine has built upon the foundation laid by these educational giants by passing a law requiring the provision of an iBook computer and 24/7 net access for every seventh and eighth grade student in the state.

This however is not an all-male history lesson. Many female teachers at MLC and Coombabah State Primary School in Queensland helped the world rethink the role of computers in schools. Merle Atherton, a quiet humanities teacher two years from retirement, embraced Logo and laptops with enormous enthusiasm and inspired countless colleagues to enjoy thinking about thinking. She was given an “in-school sabbatical” so she could work in classrooms alongside her colleagues.

Joan Taylor’s world-class Community Education department played an enormous role in the organization of holiday computer camps, global conferences and professional opportunities for teaching staff. The holiday computer camps provided parents with a creative child-care service and benefited the school in two important ways. The first benefit of the camp was as a “strongly suggested” prerequisite to attending the school as a new student. Four days of project-based computer use, the arts and a bit of sport provided adequate preparation for new children to succeed when they joined existing classrooms. Another benefit of the camps was that members of the teaching staff served as counselors. More “expert” teachers would lead robotics or Logo classes and less experienced teachers would apprentice. The casual nature of the camp allowed teachers to gain new knowledge and develop increased levels of consequence. Apprentices often replaced the experts in subsequent camps.

Community education also provided a venue for teachers interested in learning basic computing skills or finding out how to use computers for administrative tasks. This way the school could dedicate its professional development resources to using computers in ways that reformed education and benefited kids.

Merle and Joan are unsung heroes in the history of school computing.

I remember bringing some student projects back to the USA from MLC. When I shared them with one of America’s most accomplished computing-using teachers he remarked, “Oh, that’s what it looks like when the kids have time.” The ability to learn and work anywhere anytime is an obvious, yet important rationale for laptop use.

MLC was a magical place during the early nineties. Every aspect of schooling was open for discussion and reconsideration. I spent as long as three months at a time at the school with a brief to do anything I thought would contribute to educational excellence. I worked with teachers and kids in classrooms, consulted with staff, created the holiday computer camps, built a LogoExpress system to facilitate telecommunications from home and within school and had constant access to the principal. When I expressed concern over the gap between classroom reality and the rhetoric proclaiming the school’s commitment to constructionism, the principal supported my desire to take dozens of teachers away for intensive residential professional development sessions, fondly remembered as pyjama parties. After all, constructionism is something you DO as well as believe. You cannot be a constructionist who subcontracts the construction. “Do as I say, not as I do,” will no longer cut it.

Not all was perfect, even during these halcyon days. I remember needing a small bit of electronic tinkering done while at MLC and saying, “I’ll just get a girl to solder this for me.” My colleagues looked nervously around the room before someone said, “our girls don’t solder.” Concern for gender equity apparently ended at the point where students use tools, learn about electronics or perform actual service to the school community. The school musical theatre production hired professional musicians to provide accompaniment rather than utilizing talented student musicians. Ted Sizer, Deborah Meier and others write elegantly about the benefits of students assuming more responsibility for sustaining the intellectual culture and accepting responsibility for the operation of their school. We need to work harder

Soon after the pioneering efforts of MLC, two other groups of laptop schools emerged. The “marketeers” were schools more concerned with the marketing and publicity benefits of “doing laptops” than with reforming schools while nearly every other school found laptops in its future by inertia. The “marketers” and their “neighbours “ lacked the vision of the pioneer schools and found that they could differentiate themselves by embracing less empowering uses of computers and cynical assessment schemes like the International Baccalaureate. Some principals became more concerned with schmoozing hardware vendors and rising software version numbers than with educational innovation.

I am most disappointed at how little impact the laptop volcano has had on the structure of schooling. I assumed ten years ago that any educator with common sense would recognize the need for new school environments incorporating multiage, learner-centred, interdisciplinary learning. The creation of fantastic alternative learning environments at Marshmead and Clunes are evidence of a failure to bring about substantive school reform in traditional schools. The need for a school to build a new campus in order to be more learner-friendly suggests the institution’s incapacity for self-correction.

Perhaps I was naïve, but in the early nineties I had the following expectations for today’s schools.

The easy stuff

Schools would feature:

Basic productivity tool fluency

Electronic publishing of student work

Electronically-mediated parent/teacher communication

Teachers using the computer for personal productivity/school paperwork

Every child and teacher would have a personal computer

We would stop referring to computers as technology

I.T. would cease to exist as a school subject

The hard stuff

Kids would be:

All laptop owners

Composing music

Writing powerful computer programs

Freely communicating online

Building robots

Conducting scientific investigations with probeware

Publishing in a variety of convergent media

The hard stuff

School leaders would be:

Using computers in personally powerful ways

Supporting the imaginative use of emerging technology

Participating in the professional development they impose on teachers

No longer using computers to quiz or test students

The really hard stuff

Principals would no longer be able to get their photo in the newspaper just for standing next to a kid and a computer

School would be learner-centered and educators would be able to articulate what that means

School leaders would spend less time making computer deals and more time collaborating with other learners

Students would be able to program and construct their own software tools

The supremacy of curriculum would be abandoned & no one would speak of delivery

School leaders would join the community of practice

Kids would collaborate with other kids and experts around the world

The really really hard stuff

Multi-age interdisciplinary “classrooms” would be widespread

External forms of assessment would be replaced by more effective humane forms of authentic assessment

Kids would spend less time in school

Schools would stop viewing the needs of children as an impediment to the enterprise

There would be far fewer technology coordinators in schools

The advent of the World Wide Web in the mid-nineties allowed schools never particularly committed to constructionism to embrace a vehicle for reinforcing the primacy of curriculum and instruction. Despite the unrivaled power of the net to democratize publishing and offer unprecedented opportunities for collaboration, it has been assimilated by schools in the name of curriculum delivery and the status quo. Throw in the incredible expense of networking and the disasters caused by the unprecedented authority given to the non-educators running school technology infrastructures and the results were bound to be disappointing. It seems to many that the golden days of Australian school computing may be sadly behind us.

I invented Murray’s Law to describe the current state of school computing. Murray’s Law combine’s Moore’s Law and Murphy’s Law to state that every 18 months schools will purchase computers with twice the processor power of today and do things twice as trivial with those computers. Things need not be, as they seem. I will share glimpses of the opportunities some of your schools may be missing during this presentation.

MLC was clearly on the right side of history. Rather than give long-winded educational rationales for portable computers I suggest that the reason your school should provide laptops is because it’s training wheels for the adults in the school. It is inevitable that every kid will have her own full-featured portable computer, although it may not look like a laptop. Embracing laptops gives your teachers a few years to prepare for that eventuality on their terms.

I am not a cyber-utopian. I want children to have the widest possible range of high-quality experiences regardless of the medium. However, computers do offer new things to know and new ways to know new things. They can be intellectual prosthetic devices that enable people to learn and express themselves in unprecedented ways. For at-risk students the computer may provide the first opportunity to experience the satisfaction of having a wonderful idea.

For girls’ schools, the computer offers rare opportunities for young women to invent their futures. Such schools will be successful only when they embrace constructionism, computers and put the needs of learners ahead of those held by curriculum designers. The women charged with the education of girls need to model the most fearless, creative and intellectually-rich use of computers if they are to inspire girls to be their very best.

Myths We Need to Overcome

#1 Girls Don’t Like Computers
Girls use computers in all sorts of ways ignored by schools. They use the technology to sustain and establish relationships via instant messaging, a technology needlessly prohibited by many schools. They publish web pages about bands and television shows they love. They share music and rip MP3s. Girls even play video games when those games are more playful and less violent.

We need to look for opportunities to build software environments and computer activities that engage girls. Many more peer-to-peer products need to be developed.

#2 Children Use Computers in School
Some of your schools have gone to great expense in order to produce glossy brochures exclaiming, “We have computers!” What may been news in 1979 is no longer newsworthy. That race has been won. What do your girls DO with those computers?

It is not your job to sort children, to decide which ones will have certain opportunities. It is your job to ensure that all children are exposed to the widest possible range of possibilities within a supportive caring environment.

Unless every girl has the opportunity to explore robotics, programming, MIDI composition, digital filmmaking, multimedia web publishing in a culture that values these activities, we cheat them of a thorough and efficient education. While computers should be transparent across all disciplines, it is outrageous how few comprehensive secondary schools offer computer science as a serious course of study. Few girls even know that this is an option as avocation or vocation. IT or ICT classes are just dressed-up computer literacy and outdated business studies courses. They lack rigor and don’t reflect the state of computing.

According to a recent study conducted by the Australian government, 44% of all children spend less than 40 minutes per week and 66% of all children spend less than one hour per week using a computer in school.2 Similar levels of inadequate access would be found in the USA as well. The major implication of this limited access is that many girls will just not use computers at all. Scarcity is a major obstacle to use. It is just not worth it for a girl to fight for an extra few minutes of computer time. 1:1 laptop computing certainly helps overcome this problem.

#3 Girls Need Different Technology
The myth that girls that girls need “pink” technology is unfounded. They need more imaginative examples of how computers and related technology might be used. Girls don’t dislike LEGO robotics and programming. It is just that their mothers and grandmothers do not buy LEGO for them. Their mothers don’t buy much software either.

Girls don’t need purple bricks. They do need project ideas that don’t result in trucks. Time and time again we have seen that girls are quite imaginative competent programmers and engineers when inspired to engage in such activities.

Girls play computer games in ways that attempt to push the boundaries of the rules – to manipulate them. Boys study the rules and try using them to get ahead, to vanquish opponents. I have seen many young girls “play” with the genre of Expanded Books by clicking on words in silly sequences in order to get the computer to say funny things. Their willingness and desire to manipulate systems should make girls the best computer users, not the most at-risk.

Since it is increasingly difficult for companies to earn a profit producing software for children, even less is created for girls. That which is created for girls insults their intelligence and merely pretties up either trivial tasks like coloring or is related to petty chores like storing addresses or diary entries.

There have been a few notable attempts to produce software for girls, but these efforts have borne little fruit. In the late 1980s, SEGA assembled all of their female engineers, artists, authors, programmers and game designers in one building in the hopes that all of this “girl power” would inspire the creation of hit videogame software for girls. It did not.

Brenda Laurel’s company, Purple Moon, was dedicated to producing software for girls and spent unprecedented funds on research into gender play patterns. The problem was that by the end of the research there was no money left to make quality software that offered compelling experiences for girls. I remember my daughter calling Purple Moon technical support to complain that her interactive adventure game crashed. She was informed that it didn’t crash, it just didn’t really have an ending. The last hope of Purple Moon was actually based on a terrific concept, a sports game for girls. The company recognized the rise in popularity in soccer among girls and had an opportunity to develop a soccer computer game for girls. Unfortunately, their soccer program told the story of getting ready for the big match, but never actually let the girls play soccer.

All is not bleak. Innovative examples of game software, such as Dance Dance Revolution (DDR) for the Sony PlayStation,allows players to dance on a physical pad and interact with the screen. Girls love DDR and play it until they lose weight and their dance pads wear-out. They just do so at home with friends. The arcade DDR machines are played primarily by boys who engage in a less playful, more competitive version of the activity.

Perhaps the least understood development in software for girls was the enormous late ‘90s success of Mattel’s Barbie Fashion Designer software. Regardless of how you feel about Barbie, this software title sold more copies than any other piece of “girls” software ever. The industry observed the breakthrough sales of this product and wrongly attributed its success to the fact that Barbie was on the box. This simply is not true.

There has been unsuccessful Barbie software on the market for nearly twenty years and there were other Barbie titles next to Fashion Designer. So, why did FD sell so well? I would argue that its commercial success had far less to do with Barbie than with constructionism. Barbie Fashion Designer allowed girls an opportunity to use their computers to make something cool – in this case clothes you could design, print and dress your doll in. Constructionism trumps even Barbie. This is a lesson we would do well to heed.

#4 There is More to Technology than Notebook Computers
It would be a great mistake to suggest that the latest PDA gizmo or thin-client is superior to a full-featured notebook computer. Many of these devices are intended for professionals with a specific job to do. Kids need better computers than most executives. I am quite unimpressed with those who can turn word processing and web surfing into a nine-year scope and sequence chart.

School computers may be used to do work and to learn. Work consists of writing, calculating, researching and presenting information. Learning consists of being immersed in the constructive processes with a reasonable chance of leading to the construction of a larger theory or bigger question. Microsoft Office is OK for doing work. MicroWorlds Pro is superior for learning.

“These days, computers are popularly thought of as multimedia devices, capable of incorporating and combining all previous forms of media – text, graphics, moving pictures, sound. I think this point of view leads to an underestimation of the computer’s potential. It is certainly true that a computer can incorporate and manipulate all other media, but the true power of the computer is that it is capable of manipulating not just the expression of ideas but also the ideas themselves. The amazing thing to me is not that a computer can hold the contents of all the books in a library but that it can notice relationships between the concepts described in the books – not that it can display a picture of a bird in flight or a galaxy spinning but that it can imagine and predict the consequences of the physical laws that create these wonders. The computer is not just an advanced calculator or camera or paintbrush; rather, it is a device that accelerates and extends our processes of thought. It is an imagination machine, which starts with the ideas we put into it and takes them farther than we ever could have taken them on our own.”3

Those who make claims that schools should use such devices rather than notebooks probably have little experience using computers in creative ways and are probably more concerned with cost than benefit to children. We learn by constructing knowledge in a social context. Such construction is dependent on full-featured computers capable of making all sorts of wondrous things and sharing those things with others. Serendipity should be the goal. It is arrogant and misguided to put too much stock in what we think kids might do with technology. I embrace the wondrous inventions that enliven classrooms and stimulate even greater inquiry.

Software is another cause of confusion. Some educators are impressed by false complexity, software loaded with confusing features, tools and menus. The logic suggests that hard-to-use, expensive, or corporate software must be superior to the silly stuff developed specifically for kids. New need not mean better and pretty need not mean deep. We should endeavor to use as few software packages as possible, if of course those packages are sufficiently flexible, so that students may develop fluency. MicroWorlds use pays dividends after students have ample time to allow the software to become second nature. Jumping from software package to software package may impress adults, but it will cheat students of the benefits paid by fluency.

#5 We Have Good Role Models for Girls
One of the most effective ways to learn is through apprenticeship. Children learn a great deal, with little effort, from spending quality time engaged in authentic activities with adults. These adults inspire, teach and motivate through their example. It makes sense that if we want girls to be competent engaged computer users, then the women in their lives need to be competent engaged computer users. Most of the women known to children are teachers and yet they are among the weakest users of computers in society.

The critical shortage of teachers with demonstrable levels of computer fluency makes it difficult for girls to see the value of computing in their reflection. Carol Gilligan’s research suggests that during the early years of adolescence when girls begin to shape their identity, they also begin to see women marginalized by society. Teachers have a responsibility to be much better high-tech role models, computer clubs for girls need to be created and a public campaign must be waged to attract girls to hobbies and vocations involving computer technology.

#6 Girls Should Study Technology Criticism
Dale Spender once told a room full of educators that schools need to teach girls to criticize technology since for a number of reasons, including that women were being “routinely raped and molested online.” This hysterical proclamation was made prior to the widespread availability of the World Wide Web.

While we should be cautious to ensure the safety of all children, we do not need to raise irrational concerns. Reactionary criticism of “technology” (whatever that means) is like criticizing the weather. You will lead a rather unfulfilling life.

While it may be useful to be knowledgeable of the benefits and consequences of emerging technologies, criticism requires little intimate knowledge of the subject and renders the critic a spectator. Girls cannot afford to remain spectators in the use of the most powerful instruments of science, art and commerce ever invented. If girls wish to lead happy productive lives they will need to learn to cut code, to master the instruments of so much influence. We must move beyond hoping that our daughter will marry Bill Gates to a day in which our daughters compete successfully against him. This is a necessity if computers and software are to ever become more attractive and convivial for the majority gender.

#7 School Administrators are Qualified to Make Important Technology Decisions
School administrators like the marketing benefits associated with standing next to a group of kids and a computer, yet few have ever done anything imaginative with a computer. Unprecedented budgetary and educational discretion have been placed in the hands of technology directors who often have little knowledge of or concern for the learning needs of children. This abdication of responsibility has cost schools billions of dollars and squandered all sorts of good will and opportunity to innovate.

#8 Schools are Designed to Sort Children
American schools are being destroyed by the over-emphasis on higher-meaner-tougher standards and the quest for high-standardized test scores. California spends nearly $2 billion (US) annually on the administration of a testing scheme non-aligned to the curriculum and which can’t even seem to be scored correctly. Teachers are prohibited by law from looking at the test and receive no more than a score reporting on each child’s results yet are expected to improve practice based on this score.

Some schools spend as much as eleven weeks per year in external assessment in addition to the countless wasted hours of test preparation. Recess is being eliminated in some schools. Science, social studies and the arts have disappeared to make way for more literacy and numeracy based on a pedagogy of yelling louder more often. Students are being tortured by this nonsense and great teachers are being driven out of the profession. Schools are deemed failures and susceptible to takeover while children are kept from progressing to the next grade based on norm-reference tests requiring 50% to fail. This is the cruelest of hoaxes perpetrated on children. The publisher of California’s exam includes teacher instructions in the event that a student vomits on her test booklet.

One principal recently committed suicide as a result of her school’s test scores.

These tests serve no productive purpose and are cheating children of a joyous purposeful learning experience. Citizens of conscience must oppose this wholesale deprivation of educational excellence at every opportunity.

Australian independent schools do not have to play this game, yet they do. Complain all you want about the Department of Education, but your schools have the power to reject or at least influence, the trajectory of these accountability schemes.

This is not the case. In the years since I began working with Australian schools, local girls’ schools have not only capitulated to the VCE, but have embraced the odd little International Baccalaureate. Say what you like about American imperialism, but even we don’t have the audacity to dictate your curriculum.

The greatest tragedy is that local independent schools not only lack the courage to fight this scourge, they actively promote their scores in a most cynical attempt to gain market advantage over the competitors.

I spent some time looking at the web sites of local girls’ schools and was sickened by an animation of a cute little girl with text scrolling over her announcing this school’s test scores. Perhaps the advertisement should say things like, “Our school makes more girls cry and nauseous than any other school.” Or “our girls crushed the dumb girls down the street.” How about, “our school wasted more precious resources on cheap marketing stunts than our competition?”

I often feel like the Great Gazoo when I attend educational conferences. If you don’t remember Gazoo, he was the Martian who inexplicably visited Bedrock in the Flintstones. Terms like set tasks, packets of work, VCE scores, marks, CATs, outcomes or league tables are the words of Dickensian shopkeepers, not people who love children.

Girls deserve schools that do everything possible to create nurturing environments capable of honoring their emotional, intellectual, spiritual and creative needs.

Conclusion
If we believe that children are a blessing entrusted to us, then what we do should be self-evident. The choice of educational direction is not related to education party, region or grade level. We must choose between a belief in constructionism, the notion that learners are central to the learning process, or instructionism, the idea that we can improve education by teaching better. Better teachers will undoubtedly create rich environments in which students feel safe to take risks, explore their curiosity and share their knowledge. However, it is impossible to learn for anyone else no matter how hard you try. Constructionism gives agency to the learner, instructionism to the system/curriculum/teacher. Our goal should be “less us, more them.”

Schools need to do a better job of engaging all learners, listening to them and building upon their natural expertise, knowledge and talent. We need schools in which children are engaged in authentic, personally meaningful tasks in conjunction with adults who can inspire them to greater heights. Abundant computer access and high expectations for the myriad of ways in which computers may be used as intellectual laboratories and vehicles for self-expression must be the norm. Adults, particularly women, have a major responsibility as role models who develop and use sophisticated computer users. We need to think less of female students as precious Victorian-era dolls and more as competent citizens who can compute, solder and take responsibility for their own learning. They deserve no less.

1 This is not a scholarly paper. It is intended as a manifesto to accompany a keynote address. This print document cannot reproduce the examples, video clips, anecdotes, humour and passion shared during the conference. The books I love and learned from may be found at http://www.stager.org/books/. A collection of my articles about education may be found at www.stager.org.

2 Real time Computers, Change and Schooling – National sample study of the information technology skills of Australian school students

Merydth, Russel et al.
October 1999

3 Hillis, Daniel. (1998) The Pattern on the Stone: The Simple Ideas that Make Computers Work.

 

Welcome to Uzupis!

I enjoyed a lovely lunch today in the Republic of Užupis. In between bites of pizza, I couldn’t help but think of how many teachers are busily assembling the class rule and penalty documents for distribution on the first day of school.With each passing year, these reams of paper begin to resemble the US tax code in size, scope, severity and arbitrariness.

Welcome back kids! Here’s the list of ways we expect you to screw-up and be punished over the next 180 days. If you do not bring this document back to school tomorrow, signed by a parent, the cycle of punishment will begin with all due haste!

Don’t strain your back hanging the laminated set of class rules used for decades. Why not consider adopting the Constitution of Užupis for class governance?

Constitution of The Republic of Užupis

  1. Everyone has the right to live by the River Vilnelė, and the River Vilnelė has the right to flow by everyone.
  2. Everyone has the right to hot water, heating in winter and a tiled roof.
  3. Everyone has the right to die, but this is not an obligation.
  4. Everyone has the right to make mistakes.
  5. Everyone has the right to be unique.
  6. Everyone has the right to love.
  7. Everyone has the right not to be loved, but not necessarily.
  8. Everyone has the right to be undistinguished and unknown.
  9. Everyone has the right to be idle.
  10. Everyone has the right to love and take care of a cat.
  11. Everyone has the right to look after the dog until one of them dies.
  12. A dog has the right to be a dog.
  13. A cat is not obliged to love its owner, but must help in time of need.
  14. Sometimes everyone has the right to be unaware of their duties.
  15. Everyone has the right to be in doubt, but this is not an obligation.
  16. Everyone has the right to be happy.
  17. Everyone has the right to be unhappy.
  18. Everyone has the right to be silent.
  19. Everyone has the right to have faith.
  20. No one has the right to violence.
  21. Everyone has the right to appreciate their unimportance.
  22. No one has the right to have a design on eternity.
  23. Everyone has the right to understand.
  24. Everyone has the right to understand nothing.
  25. Everyone has the right to be of any nationality.
  26. Everyone has the right to celebrate or not celebrate their birthday.
  27. Everyone shall remember their name.
  28. Everyone may share what they possess.
  29. No one can share what they do not possess.
  30. Everyone has the right to have brothers, sisters and parents.
  31. Everyone may be independent.
  32. Everyone is responsible for their freedom.
  33. Everyone has the right to cry.
  34. Everyone has the right to be misunderstood.
  35. No one has the right to make another person guilty.
  36. Everyone has the right to be individual.
  37. Everyone has the right to have no rights.
  38. Everyone has the right to not to be afraid.
  39. Do not defeat
  40. Do not fight back
  41. Do not surrender

The motto of Užupis, “Don’t Fight! Don’t Win! Don’t Surrender!” would be swell for your school as well. This web site has a terrific tour of Užupis I recommend reading it.

As you begin another school year, my best advice comes from the great American philosopher Gerald Norman Springer, “Take care of yourselves and each other!”

A funny thing happened on the way to writing this article. I realized I had already published it one year ago. Senseless Acts of Homework in The Huffington Post describes my contempt for the loathsome practice of summer homework.

However, this summer, my nephew’s high school cranked the stupid dial up to 11.

I am against homework for lots of reasons.

  • The public equates it with education
  • Kids hate it
  • It encroaches on a student’s private life
  • It is coercive
  • It is too often busy-work provided by a textbook company who knows nothing about the learner
  • It wastes class time when kids swap papers and grade homework; a tedious process that leads to zero benefit for learners

In the face of a glaring absence of evidence, teachers argue that homework is used for practice or reinforcement. (I’ll save how this is a misinterpretation of “practice” for anther day) If homework is for skill development then every student should have different homework each night, right?

Nah, one-size-fits-all kids!

If there was a shred of evidence that homework was good for kids or had anything to do with learning, I would be sympathetic. However, the crazy train has now gone one station beyond forcing kids to do something they hate, that makes them hate school and that robs them of free time.

If homework is intended for reinforcement, how does one possibly justify assigning homework to students during the summer before they set foot in your class? Let me say that again. Schools are giving homework to kids before they start a course!

This is personal

Homework at the steps to the Acropolis

Three years ago, my nephew became fascinated by genealogy and has spent a great deal of time since researching our family history. He has done a remarkable job with the Ancestry.com account I pay $30/month for, has reached out to experts and fellow researchers across the globe in grammatically perfect email messages and has developed sophisticated habits of mind. I’ve long since given up hope that schools (and teachers) at most schools (The Big Picture Schools are an exception) will take notice of student interests, connect with them and provide the intellectual support to go farther than they could have gone on their own.

Kids don’t receive credit for what they are passionate about and school rarely values outside activities, except for assigned homework. I would love for my nephew’s teachers to respect his genealogical research, but it would be even better if they helped him learn what he needs to know in order to be a better historian.

My nephew’s school district does just about everything wrong – endless test prep, tracking, “honors” classes and mountains of homework.

When I realized how serious the kid was about genealogy, I promised to take him to places he learns our family is from. So, I am writing from a hotel lobby in L’Viv, Ukraine. We spent the day touring Zboriv, Ternopil and Zolochow, the villages where the learned that 3/4 of my ancestors came from. My nephew’s clue that that my great great great grandfather owned a mill in Zboriv led us to a small museum where an old historian said that there was a large mill that provided flour for the Austria-Hungarian empire down along the Strypa River. Our guide was our translator and took us to stand on the spot where my ancestors worked and fire killed their young daughter. We walked through the remaining disheveled Jewish cemeteries, visited too many monuments marking the sites of  World War II exterminations, ate Ukranian food and learned about the Zboriv battle of 1649. We discussed Eastern European politics, Soviet occupation and US politics. Our guide and driver was Alex Dunai, one of the world’s experts on Jewish life in Galicia and invaluable researcher for Daniel Mendelsohn’s magnificent book. “The Lost – A Search for Six of Six Million.”

Tomorrow night we head to Krakow and Auschwitz, followed by Vilnius, Lithuania before we rush back to the USA so the kid won’t miss a day of school. Prior to this, we spent two days in London, where we saw pieces of the Parthenon at the British Museum, and five in Athens where we went to the Acropolis, Acropolis Museum and Temple of Poseidon. The kid spent a bit of time hanging out at the Constructionism Conference where I presented a paper. My nephew not only had the opportunity to attend a SNAP! programming workshop led by Dr. Brian Harvey, but had dinner with linguists, mathematicians, computer scientists, master educators and with friends of mine who worked with Jean Piaget, Paolo Friere and Seymour Papert. He got to see his uncle speak, watch really smart people argue passionately in a civil fashion and share his work with interested adults.

Sounds good, right? The only problem is the kid has been in a hotel room trying to guess how to respond to open-ended homework prompts from teachers he hasn’t met? Did the teachers spend their summer working an unpaid second shift like my nephew did? Why did we have to schlepp a backpack full of school shit (the technical term) half-way around the world?

Before anyone says, “not every kid has an uncle who does such cool things with his nephew,” I’ll respond by saying that I would rather a kid play basketball, take a trumpet lesson, swim, go to summer camp, read for pleasure or just watch television then memorize a chapter in a science textbook before any science occurs.

I don’t know any nicer way of saying this, but preemptive summer homework seems a lot like a clear case of an abuse victim battering an even less powerful subordinate. This cycle of insanity has to end.

Defend preemptive summer homework! C’mon! I dare you!

Here is the article I published last year…

Senseless Acts of Homework – August 25, 2011

I’m a big fan of summer. I still have the same “back-to-school” nightmares I experienced as a kid as the days get shorter each August. I think that “Back-to-School” sales before Independence Day are a form of child abuse. I believe that casual neighborhood play, family vacations, scouting and organized camps produce powerful learning experiences unrivaled by school.

When I hire new teachers, I look for people who worked at a summer camp. These are teachers who love kids and know how to engage them in meaningful (and fun) activities without coercion or a scripted curriculum. In 2007, I took issue with then Senator Clinton’s call for more tutoring and suggested that the federal money allocated for tutoring children in “underperforming schools” be spent on summer camp (My Plan to Fix NCLB). The richest nation in the world can afford high-quality summer activities for even its poorest children.

Also in 2007, I published When the Jumbotron says, “Read,” You Read! That article addressed the folly of forced summer reading assigned by schools, the outlandish claims made on behalf of the practice and the punishments meted out for non-compliance. I marveled at the quality of books assigned as summer reading when compared with the standardized drivel “read” during the school year and mourned the absence of meaningful discussion accompanying the reading.

When I was a kid, the only time you heard the combination of the words, “summer” and “school” was if you misbehaved or failed a course during the school year. How I long for the good ol’ days.

Just when I think that schooling can not get any more punitive or heavy-handed, things get worse. Schools no longer feel constrained by the impulse to ask kids to read Homer Price, Holes or Because of Winn-Dixie for pleasure under a tree on a balmy summer day. Now, school leaders view children as their serfs and every waking minute of a child’s life as their property. Such megalomania may be rooted in the paranoia created by the testing uber-alles policies of NCLB and Race To The Top. Whatever the motivation, robbing children of summer is irresponsible, ineffective and malicious.

Wow! Those are strong words, Dr. Stager. What are you talking about?

My “niece,” let’s call her “Miss Summer,” just completed eighth grade in a Northern New Jersey public school district. Miss Summer is an excellent student with perfect attendance and a great many interests she looks forward to pursuing during the summer. They include swimming, playing with her brother, developing friendships, practicing the trumpet, fishing, genealogy, reading and doing nothing at all but staying in her pajamas on rainy days and watching cartoons. When I was a kid, our society valued those activities and embraced childhood. That is no longer the case.

At the end of eighth grade, Miss Summer received a substantial packet of work to be completed before she sets foot in her new high school. The transition from primary to secondary school is stressful enough, but now a mountain of homework hung over a carefree summer like a rain cloud ruining your beach vacation. Miss Summer’s school district is no longer content with suggested summer reading for parents interested in supplementing a child’s education. Hell no!

Miss Summer has assignments in nearly every subject, is expected to read Dickens’ Great Expectations alone and without teacher support, write a thesis or two and submit the work by assigned due dates via a Web-based plagiarism site, Turnitin.com.

This mountain of homework is not only cruel, it is irresponsible, miseducative and profoundly unfair for the following reasons.

  • Miss Summer has not met any of the teachers this work is being submitted to. She neither knows their personalities, values or expectations.
  • Great Expectations is pretty heavy for a fourteen year-old without teacher assistance or classroom discussion. Will it inspire or hinder a greater interest in English literature?
  • Thesis writing has not yet been taught and is unnecessarily anxiety producing for a kid who has yet to enter your school for the first time.
  • Three is an assumption made by the school district that every student knows how to use the specialized web site and has sufficient computer access to complete and submit assignments.
  • Due dates assume that children have no plans for the summer. Should camp or family vacations be ruined by these deadlines? Should a student take a laptop and satellite modem on a hike?
  • The same impulses to assign massive amounts of homework to students you’ve never met predicts that there will be little follow-up of that work when students return to school.
  • These practices are coercive, intrude upon families and seek to overrule parental decisions.
  • You are ruining kids’ summer!

I do everything I can to combat to the misguided federal education policies turning schools into joyless test-prep factories. I’ll march. I’ll write. I’ll speak out. I’ll organize. I’ll donate. I’ll provide educators with alternative strategies and help them improve their practice. I will challenge the plutocrats who threaten teachers and children.

What I will not do is defend educators who transfer their misery to innocent children. It is unconscionable for teachers to outsource their corpulent curriculum to children. You have no right to surveillance when a child is at home. If kids cannot count on you to stand between them and madness, who will protect them?

For more arguments against homework, read Alfie Kohn’s book, The Homework Myth: Why Our Kids Get Too Much of a Bad Thing or watch his DVD, No Grades + No Homework = Better Learning.

I bought my first modem and Compuserve account in 1982 or 83 and was connecting via acoustic coupler to Timeshare systems several years before that. The first online conference I participated in was in late 1985 or early 1986 and I was creating online projects for kids a couple of years later.

During the summer of 1997, I suggested to Pepperdine University Graduate School of Education and Psychology Associate Dean, the late great Dr. Terry Cannings, that Pepperdine offer our MA in Educational Technology entirely online. If memory serves, Dr. Cannings called me a charlatan.

The university had already embraced a 60% online/40% face-to-face format for it’s edtech doctoral program and was experimenting with other hybrid models, but in mid-1997, Cannings thought that entirely online was a bridge too far.

Around Christmas of that year, Dr. Cannings called me into his office and asked, “Can we discuss that online Masters idea again in January?” A meeting was scheduled at the end of January on the Malibu (main campus) to pitch the idea to the Dean. (much hilarity ensued) I created the attached proposal as a basis for discussion.

Proposal dated January 22, 1998 to create online Masters program

To put things in a historical perspective, this proposal was written the month the Lewinsky scandal broke and before anyone had heard of Ken Starr (former Dean of the Pepperdine Law School)

Great clip-art, eh?

I’m sorry that I can’t locate the cheesy “clip-art-rich”  cover page attached to the document I printed at 3 AM on my kids’ DayGlo colored printer paper, but remarkably my Mac was just able to open the original documents in Appleworks 6 and print a PDF version to share with you. There is crappy clip-art included in the body of the document.

The Dean listened politely to Dr. Cannings, Dr. McManus, Dr. Polin and myself and asked when we proposed to start this new program? We replied, “this Spring.” She nervously smiled and sent us on our our merry way. After all, universities move at a glacial pace, right?

The Online Master of Arts in Educational Technology (called OMAET, OMET & MALT over the years) was fully accredited by the end of May and our first cadre of students was on campus for what became known as VirtCamp early that July. There are lots of stories about that first Virtcamp, but I won’t share them here.

My hard drive also contains a copy of the accreditation proposal Dr. McManus and I wrote for WASC (the accrediting body), but I am not sure if it would be proper to share that document publicly (I’ll await a more informed opinion).

The reason for all of this nostalgia is that the 15th cadre of students in that program arrive for Virtcamp this week and are being greeted by an alumni-organized reunion of former students, all to mark the 15th anniversary of the program.

Regrettably, after eighteen years of teaching as an adjunct and full-time Visiting Professor at Pepperdine, I no longer feel welcome on campus. So, I’m going to sit out this week’s activities. However, I hope those students and the rest of my friends in the Blagosphere (Rod Blagojevich is also a Pepperdine alumnus) enjoy this documentary stroll down memory lane.

I think we got a good deal right in trying to create a constructionist collaborative learning environment online before PLNs, PLCs or social networking existed.

Happy Anniversary to all former and future OMAET/OMET/MALT students! I’m proud of you!


Other files found on my hard drive: