I hope that anyone reading this is healthy and sane during this period of uncertainty. Teachers and kids alike are grieving over the loss of freedom, social interactions, and normalcy. Many families, even those never before considered at-risk, are terrified of the potential for financial ruin or catastrophic health risks. Since I’m all about the love and spreading optimism, I humbly share a silver-lining for teachers and the kids that they serve.

The fact that you are being told to “teach online” in some vague version of “look busy” may mean that teachers are finally being trusted. Districts large and small are abandoning grading as they recognize that education (at home) is inequitable. I guess it’s better late than never to discover the obvious.

Parents and superintendents are vanquishing the needless infliction of nonsense known as homework. Standardized testing is being canceled, an actual miracle. Colleges have recognized that enrolling students next Fall is more important than SAT or ACT scores. Each of these emergency measures has been advocated by sentient educators forever.

So, there is reason to celebrate (briefly), but then you must act! Use this time to remake schooling in a way that’s more humane, creative, meaningful, and learner-centered. This is your moment!

In the absence of compelling models of what’s possible, the forces of darkness will fill the void. Each of us needs to create models of possibility.

The fact that kids’ days are now unencumbered by school could mean that they finally have adequate time to work on projects that matter rather than being interrupted every 23 minutes. I recently wrote, What’s Your Hurry?, about teaching computer programming, but it’s applicable to other disciplines.

Project-based learning offers a context for learner-centered pedagogy. I was reminded that the new edition of our book, “Invent To Learn – Making, Tinkering, and Engineering in the Classroom,” includes several chapters on effective prompt setting that may be useful in designing projects for kids at home. Invent To Learn also lays out the case for learning-by-doing. Use that information to guide your communication with administrators, parents, and the community.

The following are but a few suggestions for seizing the moment and reinventing education after this crisis is resolved so we may all return to a new, better, normal.

Practice “Less us, more them”

Anytime a teacher feels the impulse to intervene in an educational transaction, it is worth pausing, taking a breath, and asking, “Is there less that I can do and more that the student(s) can do?” The more agency shifted to the student, the more they will learn.

One exercise you can practice teaching online, as well as face-to-face, is talk less. If you typically lecture for 40 minutes, try 20. If you talk for 20 minutes, try 10. If you talk for 10, try 5. In my experience, there is rarely an instance in which a minute or two of instruction is insufficient before asking students to do something. While teaching online, try not to present content, but rather stimulate discussion or organize activities to maximize student participation. Piaget reminds us that “knowledge is a consequence of experience.”

Remember, less is more

My colleague Brian Harvey once said, “The key to school reform is throw out half the curriculum – any half.” This is wise advice during sudden shift to online teaching and the chaos caused by the interruption of the school year.

Focus on the big ideas. Make connections between topics and employ multiple skills simultaneously. Abandon the compulsion to “deliver” a morbidly obese curriculum. Simplify. Edit. Curate.

Launch students into open-ended learning adventures

Learning adventures are a technique I became known for when I began teaching online in the 1990s. This process is described in the 2008 paper, Learning Adventures: A new approach for transforming real and virtual classroom environments.

Inspire kids to read entire books

Since the bowdlerized and abridged basals are locked in school, encourage kids to luxuriate with real books! Imagine if kids had the freedom to select texts that interest them and to read them from cover-to-cover without a comprehension quiz or vocabulary lesson interrupting every paragraph! Suggest that kids post reviews on Amazon.com for an authentic audience rather than making a mobile or writing a five-paragraph essay. Use Amazon.com or Goodreads to find other books you might enjoy.

Tackle a new piece of software

Been meaning to learn Final Cut X, Lightroom, a new programming language, or any other piece of sophisticated software? Employ groups of kids to tackle the software alone or together and employ their knowledge once school returns. Let them share what they know and lead.

Contribute to something larger than yourself

This is the time for teachers to support kids in creating big creative projects. Write a newspaper, novel, poetry anthology, play, cookbook, or joke book. Make a movie and then make it better. Create a virtual museum. Share your work, engage in peer editing, and share to a potentially infinite audience.

Check out what Berklee College of Music students have already done!

Teach like you know better

Use this time to rev-up or revive sound pedagogical practices like genre study, author study, process writing, interdisciplinary projects and the other educative good stuff too often sacrificed due to a lack of sufficient time. You now have the time to teach well.

Take note of current events

Daily life offers a world of inspiration and learning invitations. Why not engage kids in developmentally appropriate current events or take advantage of opportunities like JSTOR being open to the public during the COVID-19 crisis? Here’s a possible student prompt.

“Go to JSTOR, figure out how it works, find an interesting article, and share what you learned with the class.”

Let Grow

Change the world by challenging students to learn something on their own by embracing the simple, yet profound, Let Grow school project. A simple assignment asks kids to do something on their own with their parent’s permission and share their experiences with their peers.

Stand on the shoulders of giants

Every problem in education has been solved and every imaginable idea has been implemented somewhere. Teachers should use this time to read books about education written by experts and learn the lessons of the masters.

Take time to enjoy some culture

There is no excuse to miss out on all of the cultural activities being shared online from free Shakespeare from the Globe Theatre, Broadway shows, operas, living room concerts, piano practice with Chick Corea, and exciting multimedia collaborations. Many of these streams are archived on social media, YouTube, or the Web. Bring some peace, beauty, and serenity into your home.

The following are some links, albeit incomplete and subjective, to free streaming cultural events.

Apprentice with the world’s greatest living mathematician

In A Personal Road to Reinventing Mathematics Education, I wrote about how I have been fortunate enough to know and spend time with some of the world’s most prominent mathematicians and that while not a single one of them ever made me feel stupid, plenty of math teachers did. Stephen Wolfram is arguably the world’s leading mathematician/scientist/computer scientist. Over the past few years, he has become interested in teachers, kids, and math education. Dr. Wolfram spoke at Constructing Modern Knowledge, runs an annual summer camp for high school mathematicians, and has made many of his company’s remarkable computational tools available for learners.

Acknowledging that many students are home do to the pandemic this week, Wolfram led a free online Ask Me Anything session about an array of math and science topics, ostensibly for kids, as well as a “follow-along” computation workshop. You, your children, or your students have unprecedented access to all sorts of expertise, just a click away! This is like Albert Einstein making house calls!

A bit of exploration will undoubtedly uncover experts in other disciplines sharing their knowledge and talents online as well.

Abandon hysterical internet policies

The immediate need for laptops, Internet access, student email, plus the expedient use of available technologies like YouTube, FaceTime, Skype, Twitter, Instagram, and Zoom has instantly dispelled the hysterical and paranoid centralized approach to the Internet schools have labored under for the past twenty-five years. The Internet has never been dependent on the policies of your school or your paraprofessional IT staff to succeed. Perhaps we will learn what digital citizenship actually looks like after teachers and children are treated like modern citizens.

Heed Seymour Papert’s advice

When I worked with Seymour Papert, he created a document titled, “Eight Big Ideas Behind the Constructionist Learning Lab.” This one sheet of paper challenges educators to create productive contexts for learning in the 21st Century. Can you aspire to make these recommendations a reality in your classroom(s)?

Do twenty things to do with a computer

In 1971, Seymour Papert and Cynthia Solomon published, Twenty Things to Do with a Computer. How does your school measure up a half-century later?

Program your own Gameboy

Yes, you read that correctly. Here is everything you need to know to write your own computer games, build an arcade, or program a handheld gaming device!

Teach reading and programming simultaneously

Upper elementary and middle school students could learn to program in Scratch and develop their reading fluency at the same time. Learn how in A Modest Proposal.

Share my sense of optimism

Shortly before the COVID-19 crisis, I published, Time for Optimism, in which I shared reasons why progressive education is on the march and how we might teach accordingly. We can do this!

Wash your hands! Stay inside! Stand with children!


Veteran educator Dr. Gary Stager is co-author of Invent To Learn — Making, Tinkering, and Engineering in the Classroom and the founder of the Constructing Modern Knowledge summer institute. He led professional development in the world’s first 1:1 laptop schools and designed one of the oldest online graduate school programs. Learn more about Gary.

Prechewed Pencils

Today’s horrific health and economic crisis might have at least one educational benefit, students are “working” from home and like everywhere else in the past two generations, communication is largely via computer generated text, not manual handwriting.

Whenever I visit a school, I scan the environment, observe social interactions, and look for learning artifacts. Even while strolling around spectacular schools — the sort of institutions blessed with phenomenal facilities, grandiose grounds, well-stocked libraries, maker spaces, and performing arts centers — I sense reason for concern. The lower primary classrooms have examples, presumably of exemplary student work, adorning the corridor walls. Sadly, the displayed work fails to match the grandeur, quality, and expectations of the school. Por que?

Thanks to the technology of choice, the pencil, your average elementary school student will spend an inordinate amount of time filling a cleverly designed worksheet with two or three banal sentences. I truly lament the lost opportunities for children to create work commensurate with their creativity and intellect. The prophylactic barrier is the pencil.

How many learning disabilities are created by a six-year-old’s confusion between their ability to express one’s self and their physical prowess at etching letters with a primitive writing stick? The development of a child’s fine motor skills is much better suited to typing than handwriting. Few other intellectual pursuits require muscle development.

Word processing is the undisputed winner of the computer age. No serious writer under the age of a presidential candidate uses a writing stick for more than writing “not my fault” in Sharpie. Writers “write” on computers. Period. Full stop. Fin!

I harbor no doubt that the pencil has retarded literacy development. It spawned the five-paragraph essay, inauthentic “writing” assignments, and has made life unpleasant for teachers sifting through piles of student chicken scratch. The pencil has fundamentally limited the quality and volume of student writing. This is indisputable.

You learn to write by writing. When you waste several years teaching kids, not one, but two different styles of ancient stick scratching, you severely diminish opportunities for students to say something with coherence, persuasion, beauty, or personal voice.

Word processing makes it possible to write more, better, and quicker, while the editing process is continuous and fluid. You may still turn in X number of drafts to satisfy an assignment, but each of those drafts is the product of countless micro-drafts. Best of all, word processing eliminates another useless and ineffective subject of bygone eras, Spelling instruction! Bonus! #winning

Spare me the academic papers by tenure-track weenies at East Metuchen Community  College seeking to “prove” that handwriting instruction raises test scores or I will be forced to send you reams of scholarship on butter churning as an effective weight loss strategy or blood letting as an indicator of entrepreneurship.

I am sorry, but publishers of handwriting workbooks and providers of D’Nealian professional development may have to go and get themselves some of those clean coal jobs or find some other way to torture young people. The College Board may be hiring!

If you feel nostalgic about handwriting, offer a calligraphy elective. Now, your school will have an art class! The high-falutin handwritten International Baccalaureate a concern? Relegate penmanship to an 11th grade PE unit.

The only time I use a pen or pencil is when asked to autograph a copy of a book I composed on a computer. Banking is online, so no more check writing excuses. You can teach kids to sign their name on a greeting card for their great grandmother in a session or two and then say, “Aloha!” to Eberhard Faber. Spend the rest of elementary school how to think and engage in work that matters. Their lumbrical muscles will thank you and their intellectual development will no longer be limited by a Number 2 drawing stick.

Teachers, it’s time to say goodbye to your little friend… Pencils R.I.P


For those interested in “keyboarding instruction,” please read this literature review.


Veteran educator Dr. Gary Stager is co-author of Invent To Learn — Making, Tinkering, and Engineering in the Classroom and the founder of the Constructing Modern Knowledge summer institute. He led professional development in the world’s first 1:1 laptop schools and designed one of the oldest online graduate school programs. Learn more about Gary.

“Prechewed Pencils” by Bernie Goldbach is licensed under CC BY-NC-ND 2.0


Scratch is a miracle. It’s popularity as a creative computing environment and its ubiquity around the world are truly impressive. Millions of children use the environment and have shared tens of millions of projects for others to enjoy and remix.

Scratch is a descendent of the Logo programming language. Logo was the first, and I would argue best, programming environment ever designed for children and learning. Logo is over fifty years old. While this would seem to be a million years old in technology years, Logo not only remains powerful in the hands of children, but benefits from a half-century worth of research, project ideas, and collective pedagogical wisdom.

Scratch adds media computation to the Logo bag of tricks available to kids. The sort of storytelling projects created in it appeals to adults who value kids being engaged in creative acts. A large part of Scratch’s appeal is the enormity of its project library full of projects that look like anyone can make them. It is also worth remembering that Scratch was originally designed for use in afterschool programs where teaching could not be guaranteed. Kids look at Scratch and know what to do. These are powerful and legitimate design features that contribute to its popularity.

Logo on the other hand was designed as a vehicle for education reform and created a “microworld” in which children could be mathematicians rather than just be taught math. Kids using Logo often fell in love with mathematics and felt intellectually powerful for the first time. Logo introduced the concept of the turtle, a representation of the child’s place in physical space, and turtle geometry, a math connected to movement in the real world. The turtle matched the intensity of children, captured their imagination, and was their collaborator in constructing mathematical knowledge. In 1968, Alan Kay first imagined the Dynabook, the progenitor of the modern laptop or tablet computer, after observing children programming in Logo. Kay recalls being amazed by the sophisticated mathematics young children were engaged in. Fifty-two years later, I feel the exact same way every time I use Logo with children.

*Today, a 5th grader came bounding up to me to announce, “Look what I accomplished!” She had taught the Logo turtle to draw a fraction, a bit of curricular detritus that normally invokes dread. In the process, she simultaneously demonstrated understanding of fractions, division, angle, linear measurement, and was on the verge of understanding variables all while teaching the turtle to draw. Turtle geometry may be the greatest mathematical prosthetic ever invented for learners. Logo creates a Mathland in which “messing about” and learning mathematics is as natural as a child develops oral language.

Math is the weakest link in every school. It remains the center for misery and instructionism in most. Seymour Papert taught me that the teaching of math ultimately jeopardizes all other efforts at educational progress. There is no gap as wide as the gulf between mathematics – a jewel of human intellect, and school math. Papert believed that even the most progressive schools become undone by the traditional diet and pedagogy of school math. He often discussed the need to create a mathematics children can love, rather than inventing tricks for teaching a “noxious” irrelevant math. Papert convinced me that no matter how project-based or student-centered a school happens to be, there remains a part of the day or week (math time) when coercion is reintroduced into the system. That is ultimately coercive to the nobler aims of the institution. Logo is and has been one of the few Trojan horses available for helping teachers rethink “math” on behalf of the kids they serve.

I fear for the future of such experiences in a world in which software has no value and there is no incentive for modern Logos to be created.

I just spent several hundred words stipulating that Scratch is a good thing. However, decisions were made in the evolution of Scratch that undermine its ability to make mathematics comprehensible, wondrous, relevant, and accessible for learners of all ages. Scratch could maintain fidelity to the powerful ideas inherent in Logo while adding all of the storytelling, animation, and media manipulation in a Web-based programming environment, but the designers of Scratch have decided to do otherwise. In fact, the most recent version, Scratch 3.0, has made it either too difficult or impossible to create the sorts of experiences I desire for my grandchildren and the children I’m privileged to teach.

I truly do not wish to step into the minefield of arguing about everyone’s favorite software, but my concerns are legitimate. I know readers may be thinking, “Hey, design your own software if you love Logo so much!” This is impossible in a world in which software has no value and there is no incentive for modern Logos to be created. Scratch benefits from mountains of government, university, and corporate funding, making it the 900-pound gorilla in coding for kids. That’s a good thing, but it could be better. My hope is that as Scratch evolves, consideration is given to bringing back some of the powerful mathematical ideas that have been lost.

Let me get specific. The following examples are a non-exhaustive list of the ways in which Scratch makes my life more difficult as a teacher and teacher educator concerned with providing authentic mathematical experiences.

Putting the turtle out to pasture
Perhaps the most enduring and kid-imagination-capturing metaphor of Logo programming goes like this:

[Teacher] “The turtle has a pen stuck in its belly button. What do you think happens when it drags its pen?”

[Kids] It draws!

This sounds simple, but is at the heart of what makes Logo a powerful, personal experience. Placing a transitional object representing ourselves inside of the machine is an instant personal invitation to programming. Drawing, with a crayon, pencil, or turtle is the protean activity for representing a child’s thinking.

Drawing or painting with the mouse is fine but denies children opportunities to express mathematical formalisms in service of drawing. There is fifty years’ worth of scholarship, joy, and powerful ideas associated with turtle graphics – often a user’s first experience with thinking like a mathematician and debugging.

Scratch 3.0 inexplicably demotes its pen blocks (commands) to software extensions. The extensions are hidden until the user un-hides them. All of the other Scratch 3.0 extensions support either external hardware control or more advanced esoterica like interactive video, language translation, or text-to-speech functionality. I appreciate that part of Scratch’s success is its clean design and lack of clutter. However, pen blocks are seminal and were integrated into previous versions. This design decision has several negative consequences.

  • It complicates the possible use of turtle graphics by requiring finding the location of the extensions button and clicking on the pen extensions
  • It implies that turtle graphics (drawing) is not as valuable a form of expression as animation.
  • The symbol on the extensions button is highly non-intuitive.
  • The pen blocks, once the extension is loaded, appear near the bottom of the block palettes, far from the motion blocks they rely on. This makes block programming cumbersome when the focus is turtle geometry.

The turtle has a pen stuck in its nose? Ouch!
In Scratch, the sprite draws from the perimeter of its shape, not its center. This makes precise movement, predictions about distances, and drawing precision much more difficult.

There are no turtle costumes for sprites
The turtle head points in the direction that matches “Forward” commands. This is obvious to even the youngest programmers. In Scratch, even if one wanted to use the turtle, there are no turtle costumes. Neither the turtles found in systems, like Turtle Art, MicroWorlds,  Lynx , or even the old 70s-80s era turtle  are provided. While it is possible to design your own Scratch costumes, you would be required to do so for every project, rather than merely adding sprite costumes to the system.

It is easy to explain that the “turtle may wear other costumes you design,” telling the kids that “the sprite could be a turtle that you can dress in custom costumes,” adds needless complexity.

No Clean, CG, Home, or CS
Nearly every other version of Logo has a Clean command for erasing the screen, CG, or CS for erasing the screen and repositioning the turtle at the center of the screen with a compass orientation of zero. Commonly found, HOME commands, send the turtle back to the center of the screen at coordinates, [0 0]. These are all simple concepts for even young children to quickly grasp and use.

Scratch’s pen extension Erase All block wipes the screen clean, but neither returns the sprite to home nor reorients a “dizzy turtle.”

Program for clearing the screen and sending the turtle/sprite home

Sure, if a teacher wants students to have a block performing the roles of Clearscreen, Scratch allows them to Make a Block.

The problem with doing so is that Scratch leaves the blocks you create, complete with their instructions, in the blocks palette – cluttering up your workspace. The definition of the “new” block cannot be hidden from users, even when the new block appears under My Blocks. Even more critically, there is no simple way to add pseudo-primitives (user-created blocks) to Scratch 3 for use by students each time they use the software. Therefore, you need to recreate Clearscreen in every new project.

[Making your own blocks is buggy too. Make your own block. Drag that stack of blocks, topped by Define, off the screen to delete it. Press Undo (Apple-Z or CTRL-Z). The definition stack of blocks returns, but not the new block under My Blocks until another block is created.]

The default sprite orientation is 90
When you hatch a sprite in Scratch, its orientation is towards the right side of the screen with an orientation of 90. If one hopes for children to construct understanding of compass orientation based on Mod 360, orienting the sprite/turtle to 0 is more intuitive. Since the turtle is a metaphor for yourself in space, your orientation is up, or 0 when facing the computer to program it.

No wrapping
For many kids, one of the most intoxicating aspects of turtle graphics comes from commanding the turtle to go forward a large number of steps. In many ways, it’s a kid’s first experience with big numbers. Turn the turtle and go forward a million steps and get a crazy wrapping pattern on the screen. Add some pen color changes, turns, and more long lines and math turns into art turns into math.

Scratch has no wrapping due to its focus on animation and game design. There could be a way to toggle wrap/no wrap. But alas…

Units are unnecessary
Not only are they unneeded, but educationally problematic. Far too much of math education is merely vocabulary acquisition, often devoid of actual experience. I go into countless classrooms where I find a store-bought or handmade “angles” poster on the wall listing the various kinds of angles. My first question is, “Who do you think is reading that?” The kids certainly aren’t, but more importantly, “Who cares?” Kids are forced to memorize names of angles too often without any experience with angles. Turtle geometry changes all of that.

If you watch me introduce turtle geometry to children, I show them that the turtle can walk and turn. It walks in turtle steps. I never use the terms, angle or degrees, until either kids use them or much much much later. After kids have experience with angles and a growing intuition about their units of measure will I mention the words, angle or degrees. After experience, those labels hang nicely on the concepts and the terms are understood, not just parroted.

In Scratch, the turn right and turn left blocks include the label for “degrees.” This is quite unfortunate. The design of these blocks is particularly odd since they do not even use the words, right and left, but arrows instead. This is most peculiar when juxtaposed against the rest of the motion blocks which are excessively chatty with extraneous text for their inputs.

Why use symbols for right and left and not a straight arrow for move?

To make matters worse, the default degree value in Scratch is 15. Kids naturally turn in 90 degree increments. If the default were 90, as it is in Turtle Art, kids quickly realize that there are turns smaller and larger when seeking angular precision. This is a much more effective sequence for understanding angle measurement from the syntonic to the abstract.

One tacit, yet profound, benefit of teachers teaching with Logo is that they gain experience teaching mathematics without front-loading vocabulary. In too many classrooms, kids are “taught” terms, like degree or angle, absent any experience. Logo-like environments offer the potential for teachers to appreciate how students may engage in mathematics unburdened by jargon. After children enjoy meaningful experiences and “mess-about” with the turtle, it is easy to say, “that’s called an angle,” or “the units used to measure angles are called degrees.” Those terms now have a powerful idea to hang their hat on.

Starting with units is not just unnecessary, it’s pedagogically unproductive.

Asymmetrical movement
Why are there blocks for turning right and left when there is only one move block? In Logo, Forward (FD) and Back (BK) are incredibly simple for children to understand and act out by playing turtle as a formal activity or in the course of programming. Move is ambiguous. Which way should I move? Forward and back make perfect sense.

Frankly, having a default of 10 in the move block is also a drag. For decades, teachers have experienced success by asking children, “How far would you like the turtle to go?” Kids suggest values and then are surprised by them. 10 is an arbitrary number. I might prefer 0 or a random integer as the default value for move. Such a change would force children to make a decision about the distance they wish to travel.

If you want the turtle to move backward, there is no back block. You are required to turn 180 degrees or move by a negative value.

Premature use of negative numbers
Introducing negative numbers and vectors the moment one encounters the turtle is premature and likely developmentally inappropriate. There is no reason for little kids to deal with negative numbers so soon when forward (fd) and back (bk) blocks could have been in the system, or at least as primitives under the pen extensions.

Multiple forwards provides kids practice with repeated addition, leading to multiplication.

Consider this simple example:

fd 20
fd 30
fd 100

Now you want the turtle to return to the midpoint of that line segment.

You can achieve that goal three ways, not including all of the repeated addition that might be used if a kid is not ready to divide 150 by 2 or figure out that a U-turn equals 180 degrees.

bk 75
rt 180 fd 75
fd -75

It is the possibility of solving even simple problems in multiple ways that is central to the genius of learning to think mathematically with Logo and the turtle. Sadly, the Scratch use of “move” to replace forward and back makes what was once a natural simple act, complicated or impossible.

PS: One more annoyance
Why are ask and answer in the Sensing palette? They get information from a user, but do not sense anything. Either move them or rename the Sensing palette, Data. Again, why lead the witness with the arbitrary “What’s your name?” value?


*Notes:
This was largely written after a recent day teaching kids. I spent months deciding whether to share this with the world. The great Cynthia Solomon contributed to my thinking and Sylvia Martinez read a draft. Seymour Papert is in my head all of the time.

Resources

  • Scratch – web site for Scratch software
  • ScratchEd – online community and resources for teachers teaching with Scratch
  • LogoThings – Cynthia Solomon’s collection of artifacts on the history of Logo
  • A Modest Proposal – ideas for using Scratch to learn computing and reading
  • Lynx – web site for new generation of Web-based Logo
  • MicroWorlds – web site for MicroWorlds software
  • Turtle Art – web site for Turtle Art software
  • The Daily Papert – archives of Seymour Papert writing, audio, and video
  • The Logo Exchange – archives of the long-running journal for Logo-using educators
  • Logo history discussion – video interview with Cynthia Solomon and Wally Feurzig, two of Logo’s creators

Selected bibliography

  • Abelson, H., & DiSessa, A. A. (1986). Turtle geometry: The computer as a medium for exploring mathematics: MIT press.
  • Harvey, B. (1982). Why logo? . Byte, 7, 163-193.
  • Hawkins, D. (2002). The informed vision; essays on learning and human nature. NY: Algora Press.
  • Newell, B. (1988a). Turtle confusion: Logo puzzles and riddles. Canberra, Australia: Curriculum Development Centre.
  • Newell, B. (1988b). Turtles speak mathematics. Canberra, Australia: Curriculum Development Centre.
  • Papert, S. (1972). Teaching children to be mathematicians versus teaching about mathematics. International Journal of Mathematical Education in Science and Technology, 3(3), 249-262.
  • Papert, S. (1993). Mindstorms: Children, computers, and powerful ideas (2nd ed.). New York: Basic Books.
  • Papert, S. (1999). Introduction: What is logo and who needs it? In LCSI (Ed.), Logo philosophy and implementation (pp. v-xvi). Montreal, Quebec: LCSI.
  • Papert, S. (2000). What’s the big idea? Toward a pedagogical theory of idea power. IBM Systems Journal, 39(3&4), 720-729.
  • Papert, S. (2002). The turtle’s long slow trip: Macro-educological perspectives on microworlds. Journal of Educational Computing Research, 27, 7-27.
  • Papert, S. (2005). You can’t think about thinking without thinking about thinking about something. Contemporary Issues in Technology and Teacher Education, 5(3), 366-367.
  • Watt, D. (1983). Learning with logo. New York: McGraw-Hill Book Co.
  • Watt, M., & Watt, D. (1986). Teaching with logo: Building blocks for learning. NY: Addison-Wesley Publishing Company.

The Papert articles (above) are available here.


Veteran educator Dr. Gary Stager is co-author of Invent To Learn — Making, Tinkering, and Engineering in the Classroom and the founder of the Constructing Modern Knowledge summer institute. He led professional development in the world’s first 1:1 laptop schools and designed one of the oldest online graduate school programs. Learn more about Gary.


I’m a big fan of children’s book illustrator/author, Dav Pikley. So, when I came across a beginning reader by him called, “Big Dog and Little Dog,” I bought it for my three year-old grandson. The grandkids should love it.

The book is complex with a great deal of subtext.

Big Dog and Little Dog want food.

Here is some food for Big Dog.

Big Dog is happy.

Here is some food for Little Dog.

Little Dog is happy too.

Deep, I know!

After the dozen or so pages of the story, the book includes f#$cking comprehension questions. The publisher, Houghton Mifflin Harcourt, calls them “Bonus Skill Building Activities.” I am not going to destroy my grandson’s love of reading by giving him books with a stupid quiz at the back.

Want to know why Johnny can’t read?

Textbook publishers and the educators engaged in a faith-based relationship with them!

I am sure that if you asked the publisher why they felt compelled to ruin a book with assessment schlock, I bet they would say, “teachers want it.” Well, who cares? Any teacher incapable of engaging a child in a conversation about Big Dog and Little Dog should be servicing robot drink dispensers at McDonalds. Better yet, perhaps teachers should shut up altogether and just let kids enjoy reading a book for information or pleasure.

Accelerated Reader, comprehension questions every three paragraphs, and other cynical schemes designed to interrupt reading  for the purpose of ranking, sorting, or failing children have a prophylactic impact on reading far more destructive than playing Minecraft or binge-watching episodes of Wife Swap.

When I was a kid, once you could read, there was no longer a subject in your schedule called, “Reading.” Today, some kids receive reading instruction K-12. These are the very same kids who we are often made to believe are not good at reading. Perhaps adults need to stop ruining the reading experience and provide kids of all ages with access to high-interest reading material free of moronic “bonus skill building activities.”


If you wish to do something about childhood literacy, donate generously to my favorite charity, Access Books. They build and stock beautiful libraries in third world schools where children would not otherwise have access to books. Criminally, those schools are in California!


Veteran educator Dr. Gary Stager is co-author of Invent To Learn — Making, Tinkering, and Engineering in the Classroom and the founder of the Constructing Modern Knowledge summer institute. He led professional development in the world’s first 1:1 laptop schools and designed one of the oldest online graduate school programs. Learn more about Gary here.

I’ve never been good at ice-breakers or getting-to-know-you games. If I am being paid to teach, whether it be children or adults, that’s my focus. I never worry about classroom management because I never enter a classroom thinking I need to manage it. “Hi, I’m Gary. We’ve got stuff to do!”

I take seriously the Reggio Emilia inspired notion that the primary responsibility of a teacher is to be a researcher – one who makes private thinking public and invisible thinking visible. Teachers should work* to understand the thinking of each student and identify what they can do in order to prepare the learning environment for the next intellectual development.

During my educator workshops around the world I often find that the best engineers are preschool teachers, the best mathematicians teach P.E., and the most natural programmers teach 5th grade (or vice versa?).  I have certainly found plenty of veteran teachers to be much more sophisticated technology users than their younger peers. Starting the workshop with preconceived notions of who the participants are or what they think they know only narrows the possibilities for serendipity and exceeding expectations.

This is the time of year when teachers meet with teachers of the next grade level to discuss the students they are about to receive. Perhaps this common practice is counterproductive. A student’s “file” can be a life sentence. Why be prejudiced about a student  before you meet her? Why not start every class with fresh eyes, an open mind, and open heart? Ask yourself, “How do I make this the best seven hours or forty-three minutes of a kid’s life?”


Footnote:

It's a lot less like work than it about caring for each student or getting to know them on a collegial level.


In Chapter Four of our new book, Invent to Learn – Making, Tinkering, and Engineering in the Classroom, we discuss the importance of prompt setting as a basis for project-based learning. I argue that “a good prompt is worth 1,000 words.” Projects are not the occasional dessert you get as a reward after consuming a semester’s worth of asparagus, but that the project should be a teacher’s “smallest unit of concern.

Last week, Sylvia Martinez and I completed a successful four-city Texas Invent to Learn workshop tour. Each workshop featured an open-ended engineering challenge. This challenge, completed in under two hours, was designed not only to introduce making, engineering, tinkering, and programming to educators with diverse experience, but to model non-coercive, constructionist, project-based learning.

Presented with what we hope was a good prompt, great materials, “sufficient” time, and a supportive culture, including a range of expertise, the assembled educators would be able to invent and learn in ways that exceeded their expectations. (We used two of our favorite materials: the Hummingbird Bit Robotics Kit and Snap! programming language.)

A good time was had by all. Workshop participants created wondrous and whimsical inventions satisfying their interpretation of our prompt. In each workshop a great deal was accomplished and learned without any formal instruction or laborious design process.

What’s your point?
Earlier today, our friends at Birdbrain Technologies, manufacturers of the Hummingbird Bit Robotics Kit, tweeted one of the project videos from our Austin workshop. (Workshop participants often proudly share their creations on social media, not unlike kids. Such sharing causes me to invent new workshop prompts on a regular basis so that they remain a surprise in subsequent events.)

This lovely video was shared for all of the right reasons. It was viewed lots of times (and counting). Many educators liked or retweeted it, All good!

What’s slightly more problematic is the statement of the prompt inspiring this creation.

“Problem: The Easter Bunny is sick. Design a robot to deliver eggs.”

That was not the exact prompt presented to our workshop participants. This slight difference makes all the difference in the world.

The slide used to launch the invention process

Aren’t you just nitpicking?
Why quarrel over such subtle differences in wording?

  • Words matter
  • My prompt was an invitation to embark on a playful learning adventure complete with various sizes of candy eggs and a seasonal theme. Posing the activity as a problem/solution raises the stakes needlessly and implies assessment.
  • Design a robot comes with all sorts of baggage and limits the possible range of approaches. (I just rejected the word, solutions, and chose approaches because words matter.)

People have preconceived notions of robots (good and bad). Even if we are using a material called a robotics kit, I never want children to cloud their thinking with conventional images of robots.

The verb, design, is also problematic. It implies a front-loaded process involving formal planning, audience, pain point, etc… good in some problem solving contexts, but far from universally beneficial.

The use of problem, design, and robot needlessly narrows and constrains the affective, creative, and intellectual potential of the experience.

A major objective of professional learning activities such as these is for educators to experience what learning-by-doing may accomplish. Diving in, engaging in conversation with the materials, collaborating with others, and profiting from generative design (a topic for future writing) leads all learners to experience success, even in the short time allotted for this activity. Such a process respects what Papert and Turkle called epistemological pluralism. Hopefully, such positive personal experiences inspire future exploration, tinkering, and learning long after the workshop ends.

Our book suggests that good prompts are comprised of three factors:

  • Brevity
  • Ambiguity
  • Immunity to assessment

Such prompt-setting skill develops over time and with practice. Whether teaching preschoolers or adults, I am sensitive to planting the smallest seed possible to generate the most beautiful garden with the healthiest flowers. That glorious garden is free of litter from brainstorming Post-It Notes, imagination crushing rubrics, and other trappings of instruction.

References
Martinez, S. L., & Stager, G. (2019). Invent to learn: Making, Tinkering, and Engineering in the Classroom, second edition (2 ed.): Torrance, CA: Constructing Modern Knowledge Press

Turkle, S., & Papert, S. (1992). Epistemological Pluralism and the Revaluation of the Concrete. Journal of Mathematical Behavior, 11(1), 3-33.


Veteran educator Dr. Gary Stager is co-author of Invent To Learn — Making, Tinkering, and Engineering in the Classroom and the founder of the Constructing Modern Knowledge summer institute. He led professional development in the world’s first 1:1 laptop schools and designed one of the oldest online graduate school programs. Learn more about Gary here.

”cmk09″

Buy the book!

Long ago, a wise friend told me that 90% of education research is bullshit. As I mature, I realize that estimate is far too modest. Social media and the nonsense masquerading as education journalism have become inundated with a flaming brown paper bag full of articles out to prove that phonics[1]and penmanship instruction[2]are crucial 21stCentury skills[3], class size does not matter[4][5], constructivism is a failed pedagogical strategy[6], there are no learning styles[7], not everyone “needs to code,”[8]all kids need to be above the norm[9][10], and that standardized testing is objective, reliable, and valid[11].

If you believe any of these things, then I would love to tell you that the Common Core State [education] Standards were “written by the nation’s governors.” No seriously; they expect us to believe that crap. I for one would love to see Chris Christie’s notes from his curriculum development meetings. “Time for some BrainPop on the GW Bridge!”

When brightly colored infographics and Venn diagrams with nothing in the intersection of the rings fail to convince you to panic, the purveyors of hysteria wave their interactive white board pen and recite the magic word, “SCIENCE!”

SCIENCE is the new FINLAND!

Wish to justify the curious epidemic of learning disabilities, just yell, “SCIENCE!” Want to medicate kids when your curriculum fails to sedate them? SCIENCE! Care to cut salaries and slash electives? SCIENCE will prove that playing the bassoon will never get you a high-paying job at Google passing out t-shirts at tradeshows like the niece of your mom’s hairdresser. (Someone should set that last paragraph to music. Lin-Manuel, call me!)

Aside from the ISIS-like fanaticism defending phonics or penmanship systems, two recent “studies” reveal the quality of SCIENCE rushing through the body education like sugar-free gummy bears. “Study Shows Classroom Decor Can Distract From Learning,” about the value of bare walls on kindergartener’s recall, and “Kids perform better during boring tasks when dressed as Batman.” No, seriously. Those are real. Someone undoubtedly earned an EdD and parking space at Southern North Dakota Community College for such drivel.

The mere stench of SCIENCE associated with such studies goes unchallenged and serves as fantastic clickbait for a myriad of school discipline conventions. (Seriously, this is a real thing.) Why doesn’t anyone ask why babies are taking bubble tests or should be subjected to ugly classrooms? Surely, the National Science Foundation is funding replication studies to determine if five-year-olds dressed as Superman or Queen Elsa are more easily tricked into wasting their formative years on meaningless tasks? [12]

It just isn’t sufficiently SCIENTIFIC for children to enjoy happy, healthy, creative, productive, and playful childhoods. Move along young Batman. Nothing to see here. Wet your pants again? You might be dyslexic.

SCIENCE is only ever used to sustain the mythology or comfort of adults. The only time educators are ever asked to provide “evidence” is to justify something kids like – laptops, recess, band, making things…

The burden of proof is quite different for defending the status quo. What was the last time you heard anyone ask for evidence to support homework, 42-minute class periods, Algebra II, AP classes, textbooks, worksheets, times tables, interactive white boards, or the countless forms of coercion, humiliation, and punishment visited on students daily?

You know where else you find very little actual science? In Science class where the vast majority of the curriculum is concerned with vocabulary memorization or historical reenactments and very few students do science by engaging in the habits of a scientist.

At a recent gathering, three generations of people shared what they remembered from their high school science classes. The most vivid memories consisted of starting fires, causing explosions, noxious fumes, throwing test tubes out a window while exclaiming, “I’m Zeus,” or killing things (plants, the class rat, time). In SCIENTIFIC terms, 0.000000003% of the official science curriculum is retained after Friday’s quiz.

Another way of providing nutrients to the sod of education rhetoric is to sprinkle highfalutin terms like, metacognition, everywhere. This form of scientism takes a little understood concept and demonstrates a profound misunderstanding of it as a vehicle for justifying more memorization, teacher compliance, or producing the illusion of student agency. Don’t even get me started about the experts incapable of discerning the difference between teaching and learning or the bigshots who think learning is a noun.

Free advice: Forbes, the McKinsey Group, anyone associated with Clayton Christensen, TED Talks and EdSurge are not credible sources on education reform, pedagogy, or learning theory even if they accidentally confirm our own biases once in a while. They are libertarian hacks hell-bent on dismantling public education. It is also a good rule of thumb to steer clear of any source containing “ED,” “topia,” “mentum,” “vation,” “mind,” “brain,” “institute,” or “ology” in their title.

When you get right down to it, many of the questionable educational practices seeking justification from SCIENCE seek to promote simplistic mechanical models of complex processes that are in actuality much harder to distill or even impossible to comprehend. To those seeking to justify phonics instruction, a simple input-output diagram is preferable to the more likely hypothesis that reading is natural. Learning is not the direct result of having been taught.

Note: This is a deliberate provocation intended to challenge a phenomenon in education rather than engage in a hot-tempered battle of dueling research studies. Don’t bother to ask me for evidence to support my claims since I’m trading in common sense and honestly do not care if you agree with me. Seriously.

Of course, there are studies widely available to validate my outrageous blather, but I am under no obligation to identify them for you unless you grant me a cushy tenure track position, medical insurance, and a pension. If this article upsets you, my powers of persuasion are inadequate to change your mind anyway.

Endnotes:

[1]If everyone learns to read through the direct instruction of a fixed sequence 43 different sounds, how do you explain students learning to read in China, Japan, Israel or any other language without phonemes?

[2]These studies always “prove” the importance of medieval chores by pointing to test score increases (memorization). How many children are misdiagnosed with learning disabilities for confusing the ability to express themselves (writing) with the way in which they use a pencil (writing)? If penmanship is so precious, teach it in art class as a craft or as a PE activity prior to the prehistoric high school IB exams.

[3]I refrain from citing the pernicious and ubiquitous “studies” I mock with such utter contempt because I do not wish to give them any more oxygen.

[4]See the amoral work of John Hattie. He also determined that desegregation doesn’t matter for student achievement. Basic concepts of right and wrong are of no consequence for such purveyors of SCIENCE!

[5]Bill Gates loves larger classes too (except for his children) – https://www.theatlantic.com/business/archive/2011/02/bill-gates-big-idea-to-fix-us-education-bigger-classes/71797/

[6]Constructivism is not a pedagogical trick, it is a scientific learning theory. Those who doubt constructivism are like flat earthers or climate change deniers. Science has nothing to do with their beliefs.

[7]Go ahead; argue that humans do not learn differently. The anti-learning styles crowd confuses teacher intervention with learning.

[8]Addressed this issue in this podcast.

[9]Hillary Clinton promised to close all schools below average – https://www.washingtonpost.com/news/the-fix/wp/2015/12/23/hillary-clinton-may-want-to-close-every-public-school-in-america-according-to-math/?utm_term=.623a9f0ad161

[10]No Child Left Behind demanded that all schools meet norm-reference standards by 2014 – [10]https://www.npr.org/sections/ed/2014/10/11/354931351/it-s-2014-all-children-are-supposed-to-be-proficient-under-federal-law

[11]See all education policy

[12]My friend Alfie Kohn does a fantastic job dismantling the quality of such “SCIENCE” in this article. https://www.washingtonpost.com/news/answer-sheet/wp/2014/06/05/the-education-question-we-should-be-asking/


Veteran educator Dr. Gary Stager is co-author of Invent To Learn — Making, Tinkering, and Engineering in the Classroom and the founder of the Constructing Modern Knowledge summer institute. He led professional development in the world’s first 1:1 laptop schools and designed one of the oldest online graduate school programs. Learn more about Gary here.

In August 2018, I delivered the opening keynote address at the Constructionism Conference in Vilnius, Lithuania. When invited to speak at the conference nearly eighteen months earlier, I felt pressured to share the topic of my address quickly. Since I do some of my best work as a wiseass, I offered the title, “Making Constructionism Great Again.” Over the ensuing months, my tongue-in-cheek title began resonating and formed the basis for what I believe to be one of my favorite keynotes ever. (Sadly, I will unlikely ever give the presentation again. Therefore, I will not have the opportunity to improve upon my performance)

Despite the title I selected, I accepted the sober challenge of making an important contribution to the conference. After all, this is a community I care about, a topic I have dedicated my adult life to, in the home of my ancestors. Due to a family emergency, the speaker scheduled before me had to fly home and my talk got moved earlier in the schedule at the last minute. That meant that some of the people I hoped would hear my message, missed it. I rarely write a speech with specific audience members in mind, but I did in this case.

A bit of background

The Constructionism Conference is held every two years, almost always in Europe. The conference prior to Vilnius was in Thailand, but that was the only time the conference was outside of Europe. For close to three decades, the conference was called, EuroLogo, and was a biennial event celebrating the use of the Logo programming language in education. In 2008, the long-time organizers of the conference worried that interest in Logo was waning and that shifting the emphasis to constructionism (1) would broaden the appeal and attract more participants. It has not. Communities begin to die when they become self-conscious. There is nothing wrong with “preaching to the converted.” There are quite successful institutions that preach to the converted. Its members find strength, nourishment, and purpose in gathering.

In my humble opinion, the problem lies within the fact that the European Logo community, and this is a generalization, focused more narrowly on the fascinating mathematical or computational aspects of the Logo programming language separate and apart from its more radical use as an instrument of school reform, social justice, and epistemology. Logo’s father and inventor of “constructionism,” Dr. Seymour Papert was a noted mathematician and computer scientist who did invent the first programming language for children, but limiting the enormity of his vision to that would be like one of his favorite parables about the blind men and the elephant.

To me, the Constructionism/EuroLogo community has been focused on what is measurable and earns academic credit for those seeking job security in university systems proud of their ongoing medieval traditions. Although I have great friends who I love, respect, and adore within this somewhat dysfunctional family, I am never sure what they make of the loud American kid who works with thousands of teachers each year and doesn’t give a damn about publishing journal articles read by 3.1415927 people.

I go to the Constructionism Conference every two years because it is important to sustain the community and ideally to help it mature. If it became more popular or influential along the way, that would be a bonus. This speech was intended as a bit of unsolicited tough love, but love nonetheless. In fact, love is a big theme in this address. That is one of the most important lessons I learned from Seymour Papert and this Constructionism Conference was the first since his death.

I hope you will watch

Thankfully, I grabbed the SD card out of the video camera sitting in the theatre pointed at the stage following the talk so there is a video documenting a talk I am proud of and wish I could give many more times. The audio quality isn’t perfect and there is no camera work (except for a couple of quick edits I made). That said, if you want to understand who I am and why I do what I do, I hope you will watch this video. It was quite an emotional experience.

If you wish to listen to it while deep sea folk dancing, please WATCH from about the 46 minute mark. You need to see, hear, and feel what great teaching and learning look like.

(1) For those of you interested in learning more about constructionism, you could read our book, Invent to Learn: Making, Tinkering, and Engineering in the Classroom or Edith Ackermann’s splendid papers, her Constructionism 2010 paper, Constructivism(s): Shared roots, crossed paths, multiple legacies or Piaget’s Constructivism, Papert’s Constructionism: What’s the difference?


Veteran educator Dr. Gary Stager is co-author of Invent To Learn — Making, Tinkering, and Engineering in the Classroom and the founder of the Constructing Modern Knowledge summer institute. He led professional development in the world’s first 1:1 laptop schools and designed one of the oldest online graduate school programs. Learn more about Gary here.

There is so much for educators to learn about learning, learn about love, and loving to learn in this remarkable reunion commemorating Art Blakey’s Centennial. (start watching from 25:41)

The Jazz Congress in NYC ended today with a panel discussion featuring approximately thirty of the world’s finest musicians, all of whom played with the great Art Blakey over the course of four decades. For my money, this may be the single greatest gathering of artists ever assembled to honor a common mentor in history. Whether you never heard of Art Blakey or he is indelibly part of your consciousness, this conversation is simultaneously moving, profound, profane, and hilarious.

This video is everything! You owe yourself the two hour experience. I will refrain from saying more so you may construct your own meaning.

This remarkable gathering may be of equal or greater significance than the legendary A Great Day in Harlem photo.


Veteran educator Dr. Gary Stager is co-author of Invent To Learn — Making, Tinkering, and Engineering in the Classroom and the founder of the Constructing Modern Knowledge summer institute. He led professional development in the world’s first 1:1 laptop schools and designed one of the oldest online graduate school programs. Learn more about Gary here.

Following speaking at the prestigious WISE Conference in Qatar (November 2017), Gary Stager delivered a keynote address on learning-by making at a conference held at The American University in Cairo. The video is finally available. Enjoy!


Veteran educator Dr. Gary Stager is co-author of Invent To Learn — Making, Tinkering, and Engineering in the Classroom and the founder of the Constructing Modern Knowledge summer institute. He led professional development in the world’s first 1:1 laptop schools and designed one of the oldest online graduate school programs. Learn more about Gary here.