Look at what preK-6 Mexican teachers did in my recent PBL 360 workshop in Guadalajara. This was their first experience with engineering, physical computing, and programming. They designed, created, and programmed these “birds” in less than two hours with the Hummingbird Robotics Kit and SNAP!

The prompt was simple…

“Make a Bird. Singing and dancing is appreciated.”

There was no instruction. The entire project was completed in under two hours – roughly the equivalent of two class periods.

My work continues to demonstrate the limits of instruction, the power of construction, and the Piagetian notion that “knowledge is a consequence of experience.” There is simply no substitute for experience. Constructive technology and computing amplify human potential and expand the range, breadth, and depth of possible projects. This is critical since the project should be the smallest unit of concern for educators.

Look at these short video clips sharing the teachers’ projects and compare what is possible during an educator’s first or second computing experience with the unimaginative and pedestrian “technology” professional development typically offered. We need to raise our standards substantially.

“You cannot behave as if children are competent if you behave as if teachers are incompetent.” – Gary Stager

The following videos are unedited clips of each group sharing their project. Start listing the plethora of curricular standards satisfied by a single project of this kind.

Operatic Diva Bird from Gary Stager on Vimeo.

The Parrott from Gary Stager on Vimeo.

Dr. Jeckyll and Mr. Hyde Robot Pengin from Gary Stager on Vimeo.

Three-Function Bird from Gary Stager on Vimeo.

Singing Bird with Creepy Eyes from Gary Stager on Vimeo.

About the author

Gary Stager, Ph.D. is the founder of the Constructing Modern Knowledge summer institute for educators, coauthor of Invent To Learn – Making, Tinkering, and Engineering in the Classroom, and curator of the Seymour Papert archive site, DailyPapert.com. You may learn more about him and reach out here.


The Hummingbirds Robotics Kit is also available from Amazon.com.

What I Did on My Three Summer VacationsBy Brian Silverman
Illustrated by Peter Reynolds

Previously published in Mathematics and Informatic Quarterly (in Bulgaria) prior to this version appearing in the Fall 1998 issue of Logo Exchange. Volume 17. Number 1.

We finally did it. We made it through the maze in Montreal’s Old Port in eleven minutes. There’s a really good chance that our time is the all-time record!

It all started a few years ago when my daughter, Diana and I were biking and found ourselves in Montreal’s Old Port. There was a new attraction called S.O.S. Labyrinthe, that promised a pirate adventure. It turned out to be a giant indoor maze in an old warehouse building with a handful obstacles with a pirate theme. The “pirates” were kids on roller blades providing help to the desperately lost and confusion to the rest of us.

The maze is a twenty-by-eighty grid of about two metre squares. The walls are made of thick plastic sheets hung between poles that are placed at the grid points. Four small sections of the maze have been built up to resemble a ship’s bridge, an engine room, a cargo hold, and lockers for the crew. These four checkpoints have hidden stampers to stamp a card received when you enter the maze.This card is also time-stamped when you first enter then maze and again when you leave.

When Diana and I first tried we got lost almost immediately. It took us about an hour and twenty minutes to find our way out and get all the stamps we needed. Despite being lost most of the time we enjoyed it so much that we went back the following week. This time we brought my son Eric along because he’d missed the first time through. The second time, to avoid getting lost, we decided to follow a set of simple rules that, as any little robot will tell you, can help to get you out of most mazes.

The rules are:

  1. turn right whenever you can
  2. turn around when you reach a dead end.

That’s all there is to it and it actually works. We followed the rules and managed to make it through the maze in about twenty two minutes. When we finished the pirate behind the desk put our names on the board as the group that had the best time of the day. He mentioned in passing that it was a better time than he sees most days.

The challenge at this point was obvious. Our goal was to get the best time ever. We only had to figure out how. I had a plan that I thought would be pretty simple. However, as is almost always the case, it didn’t turn out to be as simple as I’d initially imagined. The plan was this: Go through the maze twice. The first time through bring along a little computer to record our path. Then go home, draw a map, find the best route and go back the following day and go through running as fast as we can.

There were a couple of immediate problems. The first one was pretty easy to resolve. How could we be sure that the maze didn’t change on us between the first run and the second? (The plastic panels are moved on a regular basis to keep the maze from staying the same.) A couple of phone calls and oblique questions later, we’d found out that the maze is only changed once a week, on Thursday night. The second immediate problem was trickier to resolve. Our plan required little computers to record our path. We didn’t have any little computers. Even if we did we wouldn’t know how to make them record paths.

My friends at MIT had little computers. We’d been working for a few years on making “programmable LEGO bricks”. At that time we were at the point where we’d had a couple of prototypes that had worked for a bit but none of them were reliable enough for the task. However as a result of a sort of spinoff of that project there were some little computer boards around that weren’t much bigger than a deck of cards. I asked my friend Randy Sargent if I could borrow one. He mailed it to me and I had it within a few weeks. Unfortunately by then the season was over and the project would have to wait until the next summer.

During the course of the winter a couple of things happened. One was that I had a lot of fun programming the little computer board I’d received. Over Christmas I played with making a tiny version of Logo. By New Year’s we had Logo programmable LEGO robots that didn’t need to be attached to a big computer. At the same time Randy had been working on perfecting a new programmable brick. By the following summer these came together and we had a programmable brick and a logo program for saving information about where in the maze we’d been.

Little computers are pretty stupid. We would have liked to have been able to just carry one along and have it remember where it had been. But the little computer wasn’t up for the task. What we did instead was attach a couple of pushbuttons to it. One to click the number of “squares” we’d gone forward, the other to click in the amount that we’d turned at each corner.

The summer mostly slid away before we got around to trying a second run. When we did get around to it, it was just Eric and me. Before getting into the maze we’d attached the brick to his belt, run some wires up his shirt and down the sleeves to the pushbuttons in his hands. Unless you were looking hard you wouldn’t have noticed anything suspicious. We scoped out the maze counting out loud on the straightaways and yelling out directions at the corners. People looked at us a bit strangely in general and were particularly confused and curious when we had to bring out the brick for minor adjustments.

We didn’t do too well on that round. The brick started misbehaving about three quarters of the way through. And even if it hadn’t, the recorded data had lots of mistakes in it. With a lot of guessing and processing we were able to construct about a quarter of the map but no more. Since it was late summer we gave up again for the year figuring we’d pick it up again the following year.

The next winter was a good one for programmable bricks. When we did the second run there were only five working bricks in the world and even those five needed a fair amount of babysitting. By the next summer, there had been several new iterations of the design (largely the work of Fred Martin) resulting in dozens of working bricks that were solid enough that we wouldn’t have to worry too much about hardware failures for the next round.

Also, during the winter there was plenty of time to think about what went wrong the previous summer. The main problem was that mistakes in clicking the buttons led to so much distortion in the map that it was completely useless. The maze is so big, (more than a thousand straightaways and turns), that it’s impossible to do the kind of recording that we did without making mistakes. We thought a bit about eliminating mistakes but decided instead to run the experiment with several programmable bricks simultaneously, do the recording several times separately then regroup and compare results.

As it turns out, Randy and another friend, Carl Witty were planning to come to Montreal towards the end of the summer to show off their robots at an artificial intelligence conference. They arrived with a car full of computers, tools, and robot parts. Their robots all come with cameras connected to electronics that can discriminate colors. Their demos included robots chasing balls and each other at high speeds. It seemed only natural to get them involved in the third round.

We had a lot of discussion about whether or not we could use the vision systems they had in their robots for more automatic data gathering. We decided not to because even if we could resolve all the computer issues, we weren’t sure that we had enough batteries for all of the needed electronics for the time it’d take. We did decide, however, that since they had brought along several miniature cameras we’d take a video record of first trip through and use that to help interpret the data we’d get from the computers.

Carrying a camera around a maze really didn’t seem subtle enough. Instead we took the camera and sewed it into a hat with only the lens sticking out the front. The camcorder fit neatly in a backpack. By the time we were ready to go, Carl, Randy and I each had a programmable brick rubber banded to our belts and Eric had a camera in his hat. The data gathering run took about two hours and was pretty boring. The bricks kept disagreeing with each other but we ignored this because we decided to sort it all out later. Eric, originally worried that he’d attract too much attention with the camera ended up not being able to convince anyone that he actually had one.

We brought the electronics home, dumped the data to three separate laptop computers and then spent an evening that didn’t quite turn into an all nighter trying to make some sense of it. For hours there was Randy, Carl, and I each with our own computer bouncing sequence numbers, grid locations, and reports of similarities and differences in data between us. My wife Erlyne and the kids watched for some of this, enjoyed part of the video but abandoned us when it seemed that we’d really fallen off the deep end. We persisted and after spending some time getting a feel for the method to the madness we decided to systemically play through the video noting when everything looked to be working and stopping the tape and fudging when it didn’t. Our stamina ran out before the tape did and we gave up for the night with about three quarters of the map in place.

The next morning, we all felt refreshed and raring to go. In less that two hours the printer was churning out copies of a complete maze map . We were about to set off when Eric asked why each of us had to go to get stamps at each of the places rather than splitting up the job. We realized pretty quickly that he had a point. There was a rule against going through the walls. There wasn’t a rule against the cards with the stamps going through the walls. It took us about a half an hour of staring at the map and thinking to come up with a plan that involved three teams and three relay points to pass the cards along like a baton in a relay race. Eric and I had the first stretch, passed the cards to Randy and then headed off to where Randy would pass them back after having met Carl twice along the way.

It all worked like clockwork. The maps were accurate, the plan workable. Eric and I had the first stamp in less that two minutes and found Randy in another two. When we called him through the plastic wall he didn’t answer but his hand appeared. He said later that a pirate was standing right beside and he was trying to not attract any attention. After the handoff we headed to the final relay point where we met up with Carl and got the cards through the wall from Randy. From there it was just a quick run to the end to get the last time stamp. It had taken eleven minutes, much less time than we had imagined possible.

We went to see the pirate at the desk. The board of daily winners wasn’t around any more. We showed him our card that confirmed that we’d done it in eleven minutes. He said that if we did it that fast we must have cheated. Maybe it’s true. Throwing that much technology at a problem may be cheating. On the other hand, it may just be another way of solving it


About the author

Since the late 1970s, Brian Silverman has been involved in the invention of learning environments for children. His work includes dozens of Logo versions (including LogoWriter & MicroWorlds), Scratch, LEGO robotics, TurtleArt and the PicoCricket. Brian is a Consulting Scientist to the MIT Media Lab, enjoys recreational math, and is a computer scientist and master tinkerer. He once built a tictactoe-playing computer out of TinkerToys. Brian is a longtime faculty member of the Constructing Modern Knowledge summer institute.

You can also visit Brian’s Wikipedia page here.

About the illustrator

Peter H. Reynolds co-founded FableVision, Inc., in 1996 and serves as its Chairman. Mr. Reynolds produces award-winning children’s broadcast programming, educational videos and multimedia applications at FableVision, Inc. He served as Vice President and Creative Director of Tom Snyder Productions for 13 years.

He is also an accomplished writer, storyteller and illustrator, and gets his enthusiasm and energy to every project he creates. His bestselling books about protecting and nurturing the creative spirit include The Dot, Ish, and So Few of Me (Candlewick Press). His cornerstone work, The North Star (FableVision), The SugarLoaf book series (Simon & Schuster), My Very Big Little World and The Best Kid in the World, are the first of Peter’s many books about an irrepressible little girl who sees the world through creative-colored glasses. He has recently co-authored several popular books with his twin brother, Paul.

The film version of The Dot (Weston Woods) went on to win the American Library Association’ (ALA’s) Carnegie Medal of Excellence for the Best Children’s Video of 2005 and the film version of Ish was announced as one of ALA’s 2006 Notable Children’s Videos. His other series of original, animated film shorts, including The Blue Shoe, Living Forever and He Was Me, have won many awards and honors around the globe.

Peter’s award-winning publishing work also includes illustrating New York Times1 Best Seller children’s book, Someday (Simon & Schuster), written by Alison McGhee – a “storybook for all ages.” He illustrated the New York Times best-selling Judy Moody series (Candlewick) written by Megan McDonald, Eleanor Estes’ The Alley and The Tunnel of Hugsy Goode, Judy Blume’s Fudge series (Dutton), and Ellen Potter’s Olivia Kidney books

Peter Reynolds was a guest speaker at the 1st and 10th annual Constructing Modern Knowledge summer institute.

Bob Tinker at CMK 2008

The world lost a remarkable educator on June 22, 2017 when Dr. Robert Tinker passed away at the age of 75.

If your students have ever worked on a collaborative online project, taken a virtual class, used a science probe, played The Zoombinis, or used any terrific materials created by TERC or The Concord Consortium, Bob is the reason why.

A gifted scientist, Bob was brilliant, kind, patient, joyous, and generous. Like our mutual friend, Seymour Papert, Bob spent his life helping others to learn and love science and math just as much as he did. He possessed the rare empathy that allowed him to wonder why others might not learn this or that as naturally or easily as he did. Rather than blame or shame learners, Bob designed tools not to teach, but for learning. At Seymour Papert’s memorial celebration, Tod Machover quoted Papert as saying, “Everyone needs a prosthetic.” Bob Tinker was in the business of creating remarkable prosthetics useful for embracing the wonders of scientific inquiry.

I just learned that Bob fought on the front lines of the civil rights movement in Alabama, just as Papert did in South Africa. This news came as no surprise.

“My Dad was the probably the smartest man I knew (MIT PhD), and he decided to pass on earning a big salary with a Defense Contractor in order to positively impact change. With my mom at his side, during the civil rights movement they moved to the South to teach at a University that could hardly afford textbooks. They marched in dangerous areas. They worked to expose climate change. They personally funded the arts and those less fortunate. They then built the two largest science/match educational non-profits in the USA. The two NGOs employ hundreds, have trained thousands of teachers, and have educated millions of kids.” (Bob’s daughter, Facebook, June 22)

A life well lived… Online, Bob’s friends remember him as a mensch.

Long before politicians and hucksters began alarming the citizenry about the need to teach Science, Technology, Engineering, and Mathematics (S.T.E.M.) subjects as a vulgar ticket to careers, real or imagined, Bob Tinker created tools and technology that not only raised the standards for student participation in those fields, but did so in a progressive constructivist context. Not only didn’t his approach to S.T.E.M. exceed empty rhetoric and vocabulary acquisition, Bob’s work brought a broad spectrum of modern scientific domains to life in classrooms. Biology, chemistry, physics, computer science, earth science, electronics, engineering, and computational thinking were all in the mix.

Dr. Tinker delighting in a teacher’s scientific discovery

One could make a compelling argument that Bob Tinker is the father of S.T.E.M. However, I think of him as the Thomas Edison of S.T.E.M. Beyond his remarkable academic preparation, Bob was not resigned to a life of writing pretentious papers to be published in overpriced conference proceedings read by six colleagues. While there was nobody better at writing successful grant proposals, Bob and his colleagues had a stunning track record of “commercializing” their ideas. At both TERC, where he was Director of Educational Technology and The Concord Consortium he founded, Bob Tinker personified Edison’s notion of research AND development. An idea could be tested, refined, manufactured, and distributed in a reasonable timeframe. Unlike so many researchers cloistered in university departments and think tanks, Bob and his colleagues turned ideas into actual products enjoyed by millions of students around the world. Like Edison, Dr. Tinker didn’t work alone. He assembled and led an incredibly competent band of “muckers” who could bring impossible ideas to life.

Those products were sound, timely, reliable, open-ended, fun and teachable without succumbing to “teacher proofing” or dumbing down the science. There was never anything condescending about Dr. Tinker’s prolific work. Bob’s considerable charm and passion undoubtedly played a role in the creation of public/private partnerships, including with The National Geographic and Broderbund, required to successfully distribute his inventions to classrooms and homes everywhere. Bob was also a pioneer in making powerful software tools freely available online. He also preceded the DIY ethos of the maker movement by advocating for the creation of one’s own science probes in 2007!

In Bob’s world, there was no reason to add an A for Arts to S.T.E.M., since the doing of science and mathematics was itself, beautiful, wondrous, playful, creative, and relevant. Papert and Tinker shared a desire for children to be mathematicians and scientists, rather than being taught math or science. They both worked to make complexity possible by making the frontiers of mathematics and science accessible and usable by children. Bob went a step further and created programs where students could collaborate with scientists online as colleagues back in 1989, two years before the World Wide Web was released to the public. My fourth grade class participated in the National Geographic Kids Network Acid Rain project back in 1990.

In an interview Bob said:

“I became inspired to teach by tutoring two kids for two years in a black college in the South. It was the best education (for me!) anyone could design because it showed me exactly how science education could reach far more learners. I’ve dedicated my life to realizing that dream and it’s been wonderful working with smart people who share that dedication. There’s always been a sense of mission. We make important advances that will affect kids all over the world and—this was my initial motivation—bring cutting-edge educational resources to under-resourced kids.”

On a personal note

I do not remember exactly when I first met Bob Tinker, but it was at a conference approximately thirty years ago. Back then, the smartest people in the world spoke at educational computing conferences. I was familiar with his work prior to meeting him. In fact, I was a big fan of The Science Toolkit, distributed by home recreational software publisher, Broderbund. The Science Toolkit was a low-cost ($79 master module with two probes and $39 add-on sets) software package with external sensors that plugged into the joystick port of a microcomputer to allow children to conduct, measure, and record science experiments at home. This was an example of what Bob pioneered and called Micro-Based Labs (MBL).

Check out the video clip from the Christmas 1983 episode of the PBS show Computer Chronicles. Note how clean and simple the software it is and compare it some of the probeware software sold to schools today.

Prior to meeting Bob, I owned my own Science Toolkit. I was especially pleased with myself for figuring out how to program LogoWriter to read data from the kit’s probes without using the accompanying software. I could now write my own programs for collecting data, graphing it, and controlling my own experiments. I nailed using the light sensor, but my temperature data I received wasn’t particularly accurate. I eventually rationalized this as being the fault of the sensor or based on the limitations of the Science Toolkit, despite the fact that the probe worked just fine with the software provided. 

Not much time passed before I ran into Bob Tinker in one of those “V.I.P.” receptions, in the crummy “suite” of the conference chair in the forgettable hotel where the conference was being held. As I told Bob about my struggles with temperature data, he grabbed a napkin and wrote calculus formulas across all of the quadrants of the unfolded napkin. Bob mentioned that reading the temperature data was non-linear, a concept this C- science student could vaguely comprehend. While I never figured out how to translate the napkin math to a working LogoWriter program, Bob’s good cheer, gentle mentoring, and generosity reminded meow something I wrote in an essay a couple of years ago, “Math teachers often made me feel stupid; mathematicians never did.”

Maria Knee & Bob Tinker at CMK 2008

When I started the Constructing Modern Knowledge institute for educators ten years ago, Bob was the first speaker I secured. He had agreed  to return in a few weeks to help us celebrate our 10th anniversary this July.

I will never forget the joy he brought to kindergarten teacher extraordinaire, Maria Knee, who was euphoric while manipulating molecules in software Bob created (The Molecular Workbench). He and his colleagues made the impossible accessible to generations of teachers and children.

I am gutted by Bob’s passing. Losing Bob, Seymour Papert, Marvin Minsky, and Edith Ackermann within an 18-month period is almost too painful to bear. They were fountains of powerful ideas extinguished in anti-intellectual age hostile to science, even wonder. The education community does not enjoy a proud record of honoring the contributions of its pioneers or standing on their shoulders. Instead we continuously rediscover that which already exists, without attribution and with diminished expectations.

More than twenty-five years ago, Seymour Papert and Bob Tinker led a crazy or courageous session at the National Educational Computing Conference in Boston. If memory serves me, the presentation had a title along the lines of “Enemies of Constructionism.” I remember them taking turns placing acetates on the overhead projector proclaiming the name and photo of one of their enemies, including their NSF project manager who happened to be in the audience. This session had to be Seymour’s idea because Bob was too nice, but I suspect that Bob wrote the proposal.

I considered Bob a friend and dear colleague, even though we never really hung out or worked together formally. We often discussed collaborating on an elementary school project of some sort even though Bob modestly claimed not to know anything about little kids. Less than a year ago, Bob introduced me to a colleague and recommended that I be an advisor for an NSF proposal. I was honored to be asked and the grant* has been funded. While searching my email database, I found another proposal Bob himself included me in eleven years ago. I am humbled by his faith in me and respect for my work.

I wonder if ISTE will honor Bob in any way or if they even know who he is? I still await even a tweet about the passing of Dr. Papert. Like Papert, Bob Tinker was never invited to be a keynote speaker at ISTE or its predecessor, NECC.

Rest-in-power Bob. We will miss you forever and the struggle against ignorance continues!


Seminal articles by Robert Tinker, Ph.D.

Read more by searching for Tinker.

The Concord Consortium is assembling a collection of tributes to Bob Tinker here.

Read Bob Tinker’s Wikipedia page.

Notes

* Read the text of the funded NSF proposal, Science and Engineering Education for Infrastructure Transformation.

 

I’ve been teaching boys and girls to program computers professionally since 1982 when I created one of the world’s first summer camp computing programs. I led professional development at Methodist Ladies’ College in Melbourne, Australia for a few years beginning in 1990. Girls at MLC used their personal laptops to program in LogoWriter across the curriculum. (read about the history of 1:1 computing and programming here). That work led to perhaps as many as 100,000 Australian boys and girls learning to program computers in the early 1990s.

I taught incarcerated kids in a teen prison to program as part of my doctoral research and currently teach programming to PK-8 girls and boys at The Willows Community School

Along the way, I’ve found it easy to engage girls and their teachers in computer programming. Ample access to computers. high expectations, and a competent teacher are the necessary conditions for girls to view themselves as competent programmers. Such confidence and competence unlocks the world of computer science and gaining agency over the machine for learners.

That said, there is plenty of evidence that girls view computer science like kryptonite. Mark Guzdial, Barbara Ericson, and others have done a yeoman job of documenting the dismal rates of female participation in school or higher-ed computer science. This reality is only aggravated by the sexism and misogyny commonplace in high-tech firms and online.

Programming is fun. It’s cool. It’s creative. It may not only lead to a career, but more importantly grants agency over an increasingly complex and technologically sophisticated world. Being able to program allows you to solve problems and answer Seymour Papert’s 47 year-old  question, “Does the computer program the child or the child program the computer?”

Add the ubiquity of microcomputers to accessibility of programming languages like Turtle Art, MicroWorlds, Scratch, or Snap! and there is no excuse for every kid to make things “out of code.”

All of that aside, girls in the main just don’t find computer science welcoming, relevant, or personally empowering. Entire conferences, government commissions, volumes of scholarship, and media decry the crisis in girls and S.T.E.M. Inspiring girls to embrace computer science remains the holy grail. But…

Screen Shot 2015-06-11 at 5.19.20 PM

The Rolling Spider Minidrone

I found the key!

Drones

Girls love to program drones to fly!

Seriously. Drones.

There is a big in this simple Tickle program intended to fly away and back to its operator. Can you find it? This is an opportunity to reinforce geometric concepts.

There are 2 bugs in this simple Tickle program intended to fly away and back to its operator. Can you find them?
This is an opportunity to reinforce geometric concepts.

I recently purchased an inexpensive small drone, The Parrot Rolling Spider Mini Drone. ($80 US) If flying drones is cool. Programming them to fly is even cooler.

Thanks to a lovely dialect of Scratch called Tickle, you can use an iPad to program a flying machine! Most drones have virtual joystick software for flying the plane in real-time, but programming a flight requires more thought, planning, and inevitable debugging. Programmer error, typos, a breeze, or physical obstacles often result in hilarity.

Earlier this week, I brought my drone and iPad to a workshop Super-Awesome Sylvia and I were leading. Primary and secondary school students from a variety of schools assembled to explore learning-by-making.

Late in the workshop, I unleashed the drone.

Kids were immediately captivated by the drone and wanted to try their hand at programming a flight – especially the girls!

I truly love how such natural play defies so many gender stereotypes. Programming to produce a result, especially control is super cool for kids of all ages. (It’s also worth mentioning that this one of the few “apps” for the iPad that permits actual programming, not just “learning about coding.”)

Primary students program the drone while a boy patiently awaits his turn.

Primary students program the drone intensely while a boy patiently awaits his turn.

look up drone

Secondary school girls track the drone

Can you read this program and predict the drone's behavior?

Can you read this program and predict the drone’s behavior?

Check out some of the programmable toys and other devices you can control with Tickle!

— — — — — — — — — — — — — — — — -

In addition to being a veteran teacher educator, popular speaker, journalist, author, and publisher, Gary is co-author of the bestselling book called the “bible of the maker movement in schools”, Invent To Learn — Making, Tinkering, and Engineering in the Classroom. He also leads the Constructing Modern Knowledge summer institute and is Publisher at CMK Press.

I started teaching Logo to kids in 1982 and adults in 1983. I was an editor of ISTE’s Logo Exchange journal and wrote the project books accompanying the MicroWorlds Pro and MicroWorlds EX software environments. I also wrote programming activities for LEGO TC Logo and Control Lab, in addition to long forgotten but wonderful Logo environments, LogoExpress and Logo Ensemble.

Now that I’m working in a school regularly, I have been working to develop greater programming fluency among students and their teachers. We started a Programming with Some BBQ “learning lunch” series and I’ve been leading model lessons in classrooms. While I wish that teachers could/would find the time to develop their own curricular materials for supporting and extending these activities, I’m finding that I may just need to do so despite my contempt for curriculum.

One of the great things about the Logo programming language, upon which Scratch and MicroWorlds are built, is that there are countless entry points. While turtle graphics tends to be the focus of what schools use Logo for, I’m taking a decidedly more text-based approach. Along the way, important computer science concepts are being developed and middle school language arts teachers who have never seen value in (for lack of a better term) S.T.E.M. activities, have become intrigued by using computer science to explore grammar, poetry, and linguistics. The silly activity introduced in the link below is timeless, dating back to the 1960s, and is well documented in E. Paul Goldenberg and Wally Feurzig’s fantastic (out-of-print) book, “Exploring Language with Logo.”

I only take credit for the pedagogical approach and design of this document for teachers. As I create more, I’ll probably share it.

My goal is always to do as little talking or explaining as humanly possible without introducing metaphors or misconceptions that add future confusion or may need to remediated later. Teaching something properly from the start is the best way to go.

Commence the hilarity and let the programming begin! Becoming a programmer requires more than an hour of code.

Introduction to Logo Programming in MicroWorlds EX

Modifications may be made or bugs may fixed in the document linked above replaced as time goes by.

The first step in improving Science, Technology, Engineering and Mathematics (S.T.E.M.) in our classrooms is to find evidence of its existence.

S.T.E.M. currently suffers from the Sasquatch Syndrome. People have heard of S.T.E.M. just like they have heard of Bigfoot, but they’ve never actually seen either.

Two years ago, I taught Masters level Elementary Math and Science methods courses. One night, I asked the class of preservice teachers currently student teaching what I thought was an innocent question. I asked, “Tell me about how science is approached in your school?” The students looked around nervously for a moment and then shared observations like the following:

  • We are supposed to do science after testing season.
  • The science teacher is on maternity leave.
  • Nobody knows where the key to the science materials is.
  • Our school is focusing on numeracy and literacy.
  • Science is supposed to happen on Mondays, but we have had a lot of holidays.

You get the idea…

Not a single student teacher working in several dozen Southern California elementary schools could cite a single incident of science being taught. Forget about engineering or computer science.

After all, it’s not like little kids are curious or enjoy exploring the world around them. You couldn’t possibly teach reading or language arts in a scientific context, right?

 

I just received this photo from a second grade teacher I worked with last month in South Korea. I spent a week teaching programming (via MicroWorlds EX) and robotics (Pico Crickets & LEGO WeDo) to first through third graders while consulting with other grade level teachers and the senior leadership team.

I also received a very sweet thank you note from a 3rd grader via Facebook (I know 3rd grader ≠ Facebook).