In Chapter Four of our new book, Invent to Learn – Making, Tinkering, and Engineering in the Classroom, we discuss the importance of prompt setting as a basis for project-based learning. I argue that “a good prompt is worth 1,000 words.” Projects are not the occasional dessert you get as a reward after consuming a semester’s worth of asparagus, but that the project should be a teacher’s “smallest unit of concern.

Last week, Sylvia Martinez and I completed a successful four-city Texas Invent to Learn workshop tour. Each workshop featured an open-ended engineering challenge. This challenge, completed in under two hours, was designed not only to introduce making, engineering, tinkering, and programming to educators with diverse experience, but to model non-coercive, constructionist, project-based learning.

Presented with what we hope was a good prompt, great materials, “sufficient” time, and a supportive culture, including a range of expertise, the assembled educators would be able to invent and learn in ways that exceeded their expectations. (We used two of our favorite materials: the Hummingbird Bit Robotics Kit and Snap! programming language.)

A good time was had by all. Workshop participants created wondrous and whimsical inventions satisfying their interpretation of our prompt. In each workshop a great deal was accomplished and learned without any formal instruction or laborious design process.

What’s your point?
Earlier today, our friends at Birdbrain Technologies, manufacturers of the Hummingbird Bit Robotics Kit, tweeted one of the project videos from our Austin workshop. (Workshop participants often proudly share their creations on social media, not unlike kids. Such sharing causes me to invent new workshop prompts on a regular basis so that they remain a surprise in subsequent events.)

This lovely video was shared for all of the right reasons. It was viewed lots of times (and counting). Many educators liked or retweeted it, All good!

What’s slightly more problematic is the statement of the prompt inspiring this creation.

“Problem: The Easter Bunny is sick. Design a robot to deliver eggs.”

That was not the exact prompt presented to our workshop participants. This slight difference makes all the difference in the world.

The slide used to launch the invention process

Aren’t you just nitpicking?
Why quarrel over such subtle differences in wording?

  • Words matter
  • My prompt was an invitation to embark on a playful learning adventure complete with various sizes of candy eggs and a seasonal theme. Posing the activity as a problem/solution raises the stakes needlessly and implies assessment.
  • Design a robot comes with all sorts of baggage and limits the possible range of approaches. (I just rejected the word, solutions, and chose approaches because words matter.)

People have preconceived notions of robots (good and bad). Even if we are using a material called a robotics kit, I never want children to cloud their thinking with conventional images of robots.

The verb, design, is also problematic. It implies a front-loaded process involving formal planning, audience, pain point, etc… good in some problem solving contexts, but far from universally beneficial.

The use of problem, design, and robot needlessly narrows and constrains the affective, creative, and intellectual potential of the experience.

A major objective of professional learning activities such as these is for educators to experience what learning-by-doing may accomplish. Diving in, engaging in conversation with the materials, collaborating with others, and profiting from generative design (a topic for future writing) leads all learners to experience success, even in the short time allotted for this activity. Such a process respects what Papert and Turkle called epistemological pluralism. Hopefully, such positive personal experiences inspire future exploration, tinkering, and learning long after the workshop ends.

Our book suggests that good prompts are comprised of three factors:

  • Brevity
  • Ambiguity
  • Immunity to assessment

Such prompt-setting skill develops over time and with practice. Whether teaching preschoolers or adults, I am sensitive to planting the smallest seed possible to generate the most beautiful garden with the healthiest flowers. That glorious garden is free of litter from brainstorming Post-It Notes, imagination crushing rubrics, and other trappings of instruction.

References
Martinez, S. L., & Stager, G. (2019). Invent to learn: Making, Tinkering, and Engineering in the Classroom, second edition (2 ed.): Torrance, CA: Constructing Modern Knowledge Press

Turkle, S., & Papert, S. (1992). Epistemological Pluralism and the Revaluation of the Concrete. Journal of Mathematical Behavior, 11(1), 3-33.


Veteran educator Dr. Gary Stager is co-author of Invent To Learn — Making, Tinkering, and Engineering in the Classroom and the founder of the Constructing Modern Knowledge summer institute. He led professional development in the world’s first 1:1 laptop schools and designed one of the oldest online graduate school programs. Learn more about Gary here.

”cmk09″

Buy the book!

Dr. Gary Stager was invited to write a profile of his friend, colleague, and mentor Dr. Seymour Papert for the premiere issue of Hello World!, an impressive new magazine for educators from The Raspberry Pi Foundation. This new print magazine is also available online under a Creative Commons license.

I suggest you explore the entire new magazine for inspiration and practical classroom ideas around the Raspberry Pi platform, “coding,” problem solving, physical computing, and computational thinking.

Gary’s article was cut due to space limitations. However, the good news, for anyone interested, is that the full text of the article appears below (with its original title).

See page 25 of the Hello World! Magazine

Seymour Papert Would have Loved the Raspberry Pi!

When Dr. Seymour Papert died in July 2016, the world lost one of the great philosophers and change-agents of the past half-century. Papert was not only a recognized mathematician, artificial intelligence pioneer, computer scientist, and the person Jean Piaget hired to help him understand how children construct mathematical knowledge; he was also the father of educational computing and the maker movement.

By the late 1960s, Papert was advocating for every child to have its own computer. At a time when few people had ever seen a computer, Papert wasn’t just dreaming of children using computers to play games or be asked quiz questions. He believed that children should program the computer.  They should be in charge of the system; learning while programming and debugging. He posed a fundamental question still relevant today, “Does the child program the computer or does the computer program the child?”  Along with colleagues Cynthia Solomon and Wally Feurzig, Papert created Logo, the first programming language designed specifically for children and learning.  MicroWorlds, Scratch, and SNAP! are but a few of the Logo dialects in use fifty years later.

Papert’s legacy extends beyond children programming, despite how rare and radical that practice remains today. In 1968, Alan Kay was so impressed by the mathematics he witnessed children doing in Logo that he sketched the Dynabook, the prototype for the modern personal computer on his flight home from visiting Papert at MIT.  In the mid-1980s, Papert designed the first programmable robotics construction kit for children, LEGO TC Logo. LEGO’s current line of robotics gear is named for Papert’s seminal book, Mindstorms. In 1993, Papert conjured up images of a knowledge machine that children could use to answer their questions, just like the new Amazon Echo or Google Home. littleBits and MaKey Makey are modern descendants of Papert’s vision.

Prior to the availability of CRTs (video displays), the Logo turtle was a cybernetic creature tethered to a timeshare terminal. As students expressed formal mathematical ideas for how they wished the turtle to move about in space, it would drag a pen (or lift it up) and move about in space as a surrogate for the child’s body, all the while learning not only powerful ideas from computer science, but constructing mathematical knowledge by “teaching” the turtle. From the beginning, Papert’s vision included physical computing and using the computer to make things that lived on the screen and in the real world. This vision is clear in a paper Cynthia Solomon and Seymour Papert co-authored in 1970-71, “Twenty Things to Do with a Computer.”

“In our image of a school computation laboratory, an important role is played by numerous “controller ports” which allow any student to plug any device into the computer… The laboratory will have a supply of motors, solenoids, relays, sense devices of various kids, etc. Using them, the students will be able to invent and build an endless variety of cybernetic systems. “ (Papert & Solomon, 1971)

This document made the case for the maker movement more than forty-five years ago. Two decades later, Papert spoke of the computer as mudpie or material with which one could not only create ideas, art, or theories, but also build intelligent machines and control their world.

From his early days as an anti-apartheid dissident in 1940s South Africa to his work with children in underserved communities and neglected settings around the world, social justice and equity was a current running through all of Papert’s activities. If children were to engage with powerful ideas and construct knowledge, then they would require agency over the learning process and ownership of the technology used to construct knowledge.

“If you can make things with technology, then you can make a lot more interesting things. And learn a lot more by making them.” – Seymour Papert (Stager, 2006)

Programming computers and building robots are a couple examples of how critical student agency was to Papert.  He inspired 1:1 computing, Maine becoming the first state on earth to give a laptop to every  7th & 8th grader, and the One Laptop Per Child initiative.

 “…Only inertia and prejudice, not economics or lack of good educational ideas stand in the way of providing every child in the world with the kinds of experience of which we have tried to give you some glimpses. If every child were to be given access to a computer, computers would be cheap enough for every child to be given access to a computer.” (Papert & Solomon, 1971)

It made Papert crazy that kids could not build their own computers. When we worked together (1999-2002) to create an alternative project-based learning environment inside a troubled teen prison, we bought PCs hoping that the kids could not only maintain them, but also eventually build their own. Despite kids building guitars, gliders, robots, films, computer programs, cameras, telescopes, and countless other personally meaningful projects uninterrupted for five hours per day – a “makerspace” as school. Back then, it was too much trouble to source parts and build “personal” computers.

In 1995, Papert caused a commotion in a US Congressional hearing on the future of education when an infuriated venture capitalist scolded him while saying that it was irresponsible to assert that computers could cost $100, have a lifespan of a decade, and be maintained by children themselves.  (CSPAN, 1995) Later Papert would be fond of demonstrating how any child anywhere in the world could repair the $100 OLPC laptop with a single screwdriver. Before Congress, he asserted that computers only seem expensive when accounting tricks compare them to the price of pencils. If used in the expansive ways his projects demonstrated, Papert predicted that “kid power” could change the world.

The Raspberry Pi finally offers children a low-cost programmable computer that they may build, maintain, expand, and use to control cyberspace and the world around them. Its functionality, flexibility, and affordability hold the promise of leveraging kid power to put the last piece in the Papert puzzle.

References:
CSPAN (Producer). (1995, 12/1/16). Technology In Education [Video] Retrieved from https://www.c-span.org/video/?67583-1/technology-education&whence=

Papert, S., & Solomon, C. (1971). Twenty things to do with a computer. Retrieved from Cambridge, MA:

Stager, G. S. (2006). An Investigation of Constructionism in the Maine Youth Center. (Ph.D.), The University of Melbourne, Melbourne.

Read more

I started teaching Logo to kids in 1982 and adults in 1983. I was an editor of ISTE’s Logo Exchange journal and wrote the project books accompanying the MicroWorlds Pro and MicroWorlds EX software environments. I also wrote programming activities for LEGO TC Logo and Control Lab, in addition to long forgotten but wonderful Logo environments, LogoExpress and Logo Ensemble.

Now that I’m working in a school regularly, I have been working to develop greater programming fluency among students and their teachers. We started a Programming with Some BBQ “learning lunch” series and I’ve been leading model lessons in classrooms. While I wish that teachers could/would find the time to develop their own curricular materials for supporting and extending these activities, I’m finding that I may just need to do so despite my contempt for curriculum.

One of the great things about the Logo programming language, upon which Scratch and MicroWorlds are built, is that there are countless entry points. While turtle graphics tends to be the focus of what schools use Logo for, I’m taking a decidedly more text-based approach. Along the way, important computer science concepts are being developed and middle school language arts teachers who have never seen value in (for lack of a better term) S.T.E.M. activities, have become intrigued by using computer science to explore grammar, poetry, and linguistics. The silly activity introduced in the link below is timeless, dating back to the 1960s, and is well documented in E. Paul Goldenberg and Wally Feurzig’s fantastic (out-of-print) book, “Exploring Language with Logo.”

I only take credit for the pedagogical approach and design of this document for teachers. As I create more, I’ll probably share it.

My goal is always to do as little talking or explaining as humanly possible without introducing metaphors or misconceptions that add future confusion or may need to remediated later. Teaching something properly from the start is the best way to go.

Commence the hilarity and let the programming begin! Becoming a programmer requires more than an hour of code.

Introduction to Logo Programming in MicroWorlds EX

Modifications may be made or bugs may fixed in the document linked above replaced as time goes by.

An old friend of mine, Dr. Barry Newell, is an astrophysicist who was was the Administrator (in the NASA sense) of Mount Stromlo and Siding Spring Observatories of the Australian National University. He now works on the dynamics of social-ecological systems. In his spare time (back in 1988), he wrote two classic books on Logo programming and mathematics, Turtle Confusion and the accompanying book for educators, Turtles Speak Mathematics. Turtle Confusion features 40 challenging turtle geometry puzzles in a mystery format and Turtles Speak Mathematics helps educators understand the mathematics their students are learning.


I was reminded of the books when Sugar Labs, the folks behind the operating system for the One Laptop Per Child XO laptop, featured the challenges as an activity to accompany TurtleArt software on the XO.

Screenshot of the XO Turtle Confusion Activity

The books’ author, Dr. Barry Newell, gave me permission to share digital copies of the book for personal, educational and non-commercial use. Click here to go to the download page.

These books are best used with versions of Logo such as MicroWorlds EX or Berkeley Logo. Some of the puzzles are very difficult or impossible to solve in Scratch, but it’s worth trying if that is all you have. SNAP! is another potential option. TurtleArt is another possibility. Although, mathematical programming is often easiest and best achieved through the use of textual language (IMHO). A bit of dialect translation might be necessary. For example, CS is often CG (in MicroWorlds EX).