An old colleague, Dr. Warren Buckleitner, has been reviewing children’s media products and toys for decades. He organizes industry events about the design of products for kids while maintaining a romantic optimism that the next great app is just around the corner. However, he often feels compelled to use Dr. Seymour Papert as a negative example to support a corporate community that Papert held in great repute. It’s a neat rhetorical trick, but Warren and I have discussed what I find to be a disrespectful view of Papert in the past. This morning, I awoke to find the Children’s Technology Exchange newsletter in my inbox. The latest issue dedicates a page to something Dr. Buckleitner calls “Seymour Syndrome.”

So, I decided to set the record straight by clearing up some confusion about issues raised in his essay. (I deleted the table of content links and all of the non-relevant content in the newsletter email below in order to respect the paywall and intellectual property rights. For more information, or to subscribe to his fine publications, go to http://reviews.childrenstech.com/)

Dear Warren,

Your latest discussion caught my eye. Aside from a persistent Papert animus and fondness for negative alliteration, your critique, “Seymour Syndrome” has some bugs in it.

  1. Papert’s lifework can hardly be reduced to the foreword in Mindstorms.
  2. Dr. Papert would dislike most of the crappy “products” you feel compelled to share with the world as much, if not more so than you do. (see Does Easy Do It? Children, Games and Learning)
  3. There is not a millimeter of daylight between Piaget and Papert. (see Papert on Piaget)
  4. Piaget’s work wasn’t about hands-on, it was focused on learning through concrete experiences. That’s not the same thing. (See The Conservation of Piaget: The Computer as Grist to the Constructivist Mill or even Ian’s Truck.)
  5. Papert was not Piaget’s student. Papert had earned two mathematics Ph.D.s by the time Piaget hired him as a collaborator.
  6. What is considered “getting kids to code” today is a denatured view of Papert’s vision about democratizing agency over computers.
  7. I’m not sure what a direction variable is, but 1) kids play games and sing songs using syntonic body geometry (like the turtle) from a very early age and 2) lots and lots of kids can use RIGHT and LEFT to learn directionality long before they’re eight or nine years-old.
  8. Papert’s “gear” story is a metaphor. His life’s work was dedicated to creating the conditions in which children could fall in love with powerful ideas naturally and with lots of materials, technologies, and experiences. His book, The Children’s Machine: Rethinking School in the Age of the Computer, discusses the importance of sharing learning stories.
  9. Papert wasn’t “led to Logo.” He, along with Wally Feurzig and Cynthia Solomon invented Logo. The fact that you’re still talking about it 50 years later points to at least its durability as an “object to think with.” (Here is a video conversation about Logo’s origins with two of its inventors.)
  10. Scratch can be considered Papert’s grandchild. I’m glad you like it.
  11. Most of the products you review make “exaggerated” claims about their educational properties. Why should this one be any different? Why blame Papert? (Dr. Papert wrote an entire book of advice for parents on avoiding such products and substituting creative activities instead. See The Connected Family – Bridging the Digital Generation Gap)
  12. The current CS4All, CSEdWeek, Hour-of-Code efforts are almost entirely “idea averse” (a great Papert term) and could really stand to learn a few things from Dr. Papert.

BTW: Thanks for your review of the CUE robot. It was helpful. Imagine if these toys had the extended play value of a programming language, like Logo? I’ve been using and learning with Logo for close to 40 years and have yet to tire of it. I sure wish you could have seen me teach Logo programming to 150 K-12 educators last week in Virginia. It was magnificent.

Happy holidays!

Gary

PS: I wonder why so many people feel so comfortable calling Dr./Professor Seymour Papert by his first name? Nobody calls Dewey, “John,” or Piaget, “Jean.”

On December 7, 2017 at 8:31 AM Children’s Technology Review wrote:

CTR Weekly – December 7, 2017
View this email in your browser
“Human relationships matter most.”  

 

 

RECOGNIZING SEYMOUR SYNDROME
See page 4 Recognizing “Seymour Syndrome”  Seymour Papert was a gifted individual. I mean no disrespect to his legacy by this article. I’ve seen how his ideas about children and coding have misled well-intentioned adults in the past.  Fast forward 40 years, and history is repeating itself. From reading Seymour Papert’s 1980 book, Mindstorms, we learn that he was fascinated by gears as a child. “Playing with gears became a favorite pastime. I loved rotating circular objects against one another in gearlike motions and, naturally, my first ‘erector set’ project was a crude gear system.” Papert wanted every child to have such mindstorms, which led him to Logo; an early programming language. Throughout the 1980s and early 1990s, many educators suffered from “Seymour Syndrome” — meaning an idealistic optimism that coding was the key to a better future. There was a rush to enroll children in coding camps. I know this because I was one of the teachers. I started calling all the hype “Seymour Syndrome” people trying to get young children to code, before they can understand what is going on. Today’s market has once again flooded with commercial coding-related apps, robots and games being sold with the promise that they can promote science, technology, engineering and math (STEM). Cubetto is one of these. The symptoms are in the marketing materials that name-drop Montessori, and claim that time with this rolling cube will  “teach a child to code before they can read.” Cubetto’s coding means finding six AA batteries and plotting out the course of a slow moving rolling cube on a grid. You do this by laying direction tiles on a progress line and pressing a transmit button.  I shudder to think that teachers are spending time attempting to “teach” children how to “code” thinking that this actually as something to do with “teaching” children how to “code” to fulfill a STEM objective. Students of child development know that preschool and early elementary age children learn best when they are actively involved with hands on, concrete materials. Papert’s teacher — Jean Piaget called the years from 3 to 7 “concrete operations” for a reason. The motions of the cube should be directly linked to the command, or better yet, the child should be in the maze, for a first-person point of view. ‘ Good pedagogy in the early years should be filled with building with blocks, playing at the water table filling and emptying containers, moving around (a lot) and testing language abilities on peers. If you want to use technology, get them an iPad and let them explore some responsive Sago Mini apps. Spend your $220 (the cost of a Cubetto) on several a low cost, durable RC vehicles that deliver a responsive, cause and effect challenge. Let the direction variables wait until the child is eight- or nine-years of age, when they can use a program like Scratch to build an entire program out of clusters of commands. As far as the “coding” part, save your pedagogical ammo for materials that match a child’s developmental level.

LITTLECLICKERS: PROJECTION MAPPING
Do you like to play with shadows? If so, you’ll love projection mapping. That’s when you use a computer projector to create a cool effect on a ceiling or building. Let’s learn some more.   1. What is projection mapping? According to http://projection-mapping.org/whatis/ you learn that it’s simply pointing a computer projector at something, to paint it with light. You can play a scary video on your house a Halloween, or make Santa’s sled move across your ceiling during a concert. The possibilities are endless. Visit the site, at www.littleclickers.com/projectionmapping


Website
YouTube
Facebook
Twitter

Subscribe to Children’s Technology Review for $60/year 

OBJECTIVE • AD FREE • COMPREHENSIVE REVIEWS OF CHILDREN’S TECHNOLOGY, SINCE 1993

This email message contains no sponsored content or purchase links. It is sent to paid subscribers of Children’s Technology Review. Please forward to a friend or a colleague, but only if you think they might become a paid subscriber.
WE APPRECIATE THE SUPPORT OF OUR WORK. 

Copyright © 2017 Children’s Technology Review, 126 Main Street, Flemington NJ 08822. All rights reserved.

Our email address is: info@childrenstech.com
To update subscription preferences by phone: 908-284-0404 (9 to 3 EST)

About the author

Veteran educator Dr. Gary Stager is co-author of Invent To Learn — Making, Tinkering, and Engineering in the Classroom and the founder of the Constructing Modern Knowledge summer institute. He is also the curator of the Seymour Papert archive site, The Daily Papert. Learn more about Gary here.


I am often asked about the adoption of Chromebooks and have spent months agonizing how to respond. This article offers food for thought to teachers, administrators, school board members, and policy makers who might find themself swept up in Chromebook mania.

What should a student computer do?

In addition to being portable, reliable, lightweight, affordable, and with a good battery life, a student computer should capable of doing everything our unimaginative adult reptilian brains think a kid should be able to do with a computer and powerful enough to do a great many things we cannot imagine.

The Chromebook might be sufficient if you believe that the primary purpose of school to be taking notes, looking stuff up, completing forms, and communication. I find this to be an impoverished view of both learning and computing. Children need and deserve more. If you find such uses compelling, kids already own cellphones capable of performing such tasks.

Powerful learning is a bargain at any price

Thirty years ago, my friend and mentor Dr. Cynthia Solomon taught me that sound education decisions are never based on price. Providing children with underpowered technology insults kids, treats them like 2nd class citizens, and signals that schools should get scraps. The more schools settle for less, the less the public will provide.

One of the most peculiar terms to enter the education lexicon is “device.” What was the last time you walked into an electronics or computer store and said to a salesperson, “I would like to buy a device please?” This never happens. You buy yourself a computer.

A device is an object you buy on the cheap for other people’s children to create an illusion of modernity. A Chromebook might be swell for a traveling salesman or UPS driver. It is, in my humble opinion, insufficient for school students in 2017.

Providing students with a Chromebook rather than a proper laptop computer is akin to replacing your school orchestra instruments with kazoos. We live in one of the richest nations in all of history. We can afford a cello and multimedia-capable computer for every child.

My best friend’s son attends a middle school where every student was issued a Chromebook. The kids use them primarily to charge their iPhones.

If someday, Chromebooks are sufficiently robust, reliable, and flexible at a good price, I will embrace them with great enthusiasm. That day has yet to arrive.

Chromebooks represent an impoverished view of computing

Read Seymour Papert and Cynthia Solomon’s 1971 paper, “Twenty Things to Do with a Computer,” (Go ahead. Google it on a Chromebook if you wish) and see how many of things they demonstrated that kids were doing with computers more than 45 years ago are possible on your “device.”

Australian schools in 1989-90 embraced personal laptop computing as a vehicle for programming across the curriculum and created a renaissance of learning with computers that too many educators remain ignorant of or have chosen to forget. Look at the capabilities of the XO computer, aka the $100 laptop, created by the One Laptop Per Child foundation. It was more powerful than today’s Chromebook. We do not to use classroom technology that dooms learners to secretarial roles. They need computers to invent, create, compose, control microcontrollers, program robots, run external machines, build simulations, and write their own software.

Where is S.T.E.M? Or the Arts in the examples of classroom Chromebook use? To those who say that you can compose music, make movies, or edit large audio files on a Chromebook, I suggest, “You first!” The ability to connect things like microcontrollers, robotics, 3D printers, laser cutters may indeed become possible on a Chromebook in the near future, but we already have all sorts of personal computers capable of doing all of those things well today. Why gamble?

When geniuses like Alan Kay, Seymour Papert, Cynthia Solomon, and Nicholas Negroponte spoke of “the children’s machine,” they meant a better computer than what their father used at the office. Today, “student devices” take on an air of condescension and paternalism that disempower young people.

Schools continuously invent that which already exists; each time with diminished expectations.

They love them!

The only time you hear teachers or administrators claim that kids love something is when those very same adults are desperate to justify a bad decision. Telling me that teachers are finally “using technology” since you procured Chromebooks is just an example of setting low expectations for the professionals you entrust with educating children. Making it easy to do school in a slightly more efficient manner should not be the goal. Making the impossible possible should be. Celebrating the fact that a teacher can use a Chromebook is an example of the soft bigotry of low expectations.

How low can you go?

I truly respect and appreciate that public schools are underfunded, but underpowered Chromebooks are not the answer. How cheap is cheap enough for a student “device?”

I recently purchased a 15-inch HP laptop with a touchscreen, extended keyboard, 12 GB of RAM, a 2 TB hard drive, and Windows 10 at Costco for $350. I routinely find real PC laptops capable of meeting the standards I outlined above in the $250 – $350 price range in retail stores. Imagine what the price would be if schools wished to buy millions of them!

If $250 – $350 is too expensive (it’s cheaper than playing soccer for one season), how about $35 for a Raspberry Pi, the powerful computer students can run real software on, including Mathematica, which comes free, on the Pi. A Raspberry Pi 3 computer has greater flexibility, power, and available software than a Chromebook and it costs less than my typical Dominos Pizza order.

If you’re feeling extra flush with cash, add a Raspberry Pi Zero computer to your order for the price of that delicious chocolate chip brownie concoction Dominos offers upon checkout.

The Cloud is not free and it still sucks!

One of the great misconceptions driving the adoption of “devices,” such as the Chromebook, is the promise of cloud computing. Doesn’t that just sound heavenly? The cloud….

How is the Internet access in your school? Painful? Slow? Unreliable? Have hundreds of children do all of their computing in the cloud and you may find the school network completely unusable. The future may indeed be “in the cloud,” but today works really well on personal hard drives.

The cost of upgrading your network infrastructure and then employing a high school dropout named Lenny and all of his mates to maintain the network (ie… lock, block, and tell teachers what they can and cannot do online) is much more expensive than trusting kids to save their files on their own laptop.

The Vision thing

Perhaps I missed something, but I am unaware of the educational vision supporting widespread Chromebook adoption. Google has not even faked an educational philosophy like “Think Different.”

Screwing Microsoft might be fun, even laudable, but it is not a compelling educational vision.

The Google problem

Did you hear that Google has a free salad bar and dry cleaning? How cool is that? I wish our staff room had a barista! The successful penetration of Chromebooks into schools is due in no small part to our culture’s lust for unlimited employer provided vegan smoothies. However, it would be irresponsible for educators to surrender pedagogical practice and the potential of our students to the whims of 23 year-old smartasses at any technology company. Silicon Valley could make its greatest positive impact on education by learning the lessons of history, consulting education experts, and most importantly, paying their fair share of taxes.

There are also legitimate privacy concerns about trusting a benevolent corporation with our intellectual property, correspondence, and student data. Google clearly has a lot to gain from hooking kids and their teachers on “The Google” while turning their customers into product.

The pyramid scheme known as the Google Certified Educator program turns innocent well-meaning teachers into street corner hustlers armed with a participation trophy for heroically mastering “the Google.”

Again, I do not understand why any of this reliance on Google is necessary. The average school could spend well under $100/month on its own email and web servers either on-site or co-located. Best of all, no one is reading your email and you are ultimately responsible for your own files. Let a 5th grader manage the entire operation!

The miracle of Google’s YouTube is that a company makes billions of dollars per year by delivering ad-supported stolen content to users. Any teacher who does not believe that they too are in the intellectual property business should be prepared to be replaced by a YouTube video.

Google envy makes bad education policy.

Unicorn Computing

School decision makers responsible for purchasing Chromebooks have been heard to say the following in justification of their actions.

“I had to get Chromebooks!”

The school up the street got them.

“The latest batch is so much better than the other ones we bought.”         

Why are you investing in unreliable technology and then congratulating yourself for doing it again?

“I know that the Chromebooks don’t do everything we need or want them to do, but they should soon.”

Then why did you buy Chromebooks now?

I call the actions justified by such statements unicorn computing. Peer pressure, hoping, and praying are insufficient justification for saddling teachers and children with underpowered powered unreliable devices – especially when cost-effective options exist.

In Closing…

It doesn’t matter to me if a new kind of computer captures the heart and wallets of consumers. All that matters is that scarce educational resources are used to provide students with maximum potential. If Chromebooks were the first computer ever invented and other options did not exist, I might embrace the Chromebook as a classroom option. If Chromebooks were sufficiently powerful, durable, and reliable, I’d endorse their use. When better computers are available at approximately the same price, disempowering kids and confusing teachers seems an imprudent option.

My life’s work has been dedicated to expanding rich learning opportunities for all students by helping educators embrace the tools of modernity. Much of this work has involved personal computing. From 1990, I led professional development in the world’s first two laptop schools and then countless others inspired by this work. I worked with the father of educational computing, Dr. Seymour Papert, for twenty years and was a member of the One Laptop Per Child Foundation’s Learning Group. Professionally, I have taught children to program computers across the curriculum since 1982. I learned to program in the mid-1970s, an experience that liberated my creativity and opened a window into a world of powerful ideas ever since.

I view computers as personal intellectual laboratories, ateliers, and vehicles for self-expression. The act of computing gives children agency over an increasingly complex and technologically sophisticated world. When every child owns a personal portable computer, they are able to construct knowledge “anytime anywhere,” learn-by-doing, and share their knowledge with a global audience. Computing bestows agency upon learners and allows them to embrace complexity while exploring domains of knowledge and demonstrating ways of knowing unavailable to adults just a few years ago.

There is no greater advocate for computers and computing in education than me. However, the purchasing decisions made by adults, for students, can either amplify human potential or impede learning.

Smaller cheaper computers are an attractive proposition, especially for cash-strapped schools, but I am alarmed by the widespread and too often thoughtless adoption of Google Chromebooks in education. Simply stated, the Chromebook turns back the clock on what we have learned children can do with computers in search of an immature technology.

I wrote the attached paper for the 2017 Interaction Design and Children Conference at Stanford University. It was accepted, but ultimately not published since I could not justify the thousand bucks or so it would cost to attend the conference and then sign over the copyright of my work in order for it to disappear into an obscure journal.

Participating in such academic conferences have a very low return on investment since I am not a tenure track university professor. Nonetheless, I hope this paper makes some sort of contribution to the discussion.


ABSTRACT

The recent death of Seymour Papert is an occasion for grief, celebration, and planning for building upon his enormous contributions to knowledge. This paper is a plea for the IDC community to help preserve and expand upon the enormity of Papert’s powerful ideas.

Read the complete paper here.

Bob Tinker at CMK 2008

The world lost a remarkable educator on June 22, 2017 when Dr. Robert Tinker passed away at the age of 75.

If your students have ever worked on a collaborative online project, taken a virtual class, used a science probe, played The Zoombinis, or used any terrific materials created by TERC or The Concord Consortium, Bob is the reason why.

A gifted scientist, Bob was brilliant, kind, patient, joyous, and generous. Like our mutual friend, Seymour Papert, Bob spent his life helping others to learn and love science and math just as much as he did. He possessed the rare empathy that allowed him to wonder why others might not learn this or that as naturally or easily as he did. Rather than blame or shame learners, Bob designed tools not to teach, but for learning. At Seymour Papert’s memorial celebration, Tod Machover quoted Papert as saying, “Everyone needs a prosthetic.” Bob Tinker was in the business of creating remarkable prosthetics useful for embracing the wonders of scientific inquiry.

I just learned that Bob fought on the front lines of the civil rights movement in Alabama, just as Papert did in South Africa. This news came as no surprise.

“My Dad was the probably the smartest man I knew (MIT PhD), and he decided to pass on earning a big salary with a Defense Contractor in order to positively impact change. With my mom at his side, during the civil rights movement they moved to the South to teach at a University that could hardly afford textbooks. They marched in dangerous areas. They worked to expose climate change. They personally funded the arts and those less fortunate. They then built the two largest science/match educational non-profits in the USA. The two NGOs employ hundreds, have trained thousands of teachers, and have educated millions of kids.” (Bob’s daughter, Facebook, June 22)

A life well lived… Online, Bob’s friends remember him as a mensch.

Long before politicians and hucksters began alarming the citizenry about the need to teach Science, Technology, Engineering, and Mathematics (S.T.E.M.) subjects as a vulgar ticket to careers, real or imagined, Bob Tinker created tools and technology that not only raised the standards for student participation in those fields, but did so in a progressive constructivist context. Not only didn’t his approach to S.T.E.M. exceed empty rhetoric and vocabulary acquisition, Bob’s work brought a broad spectrum of modern scientific domains to life in classrooms. Biology, chemistry, physics, computer science, earth science, electronics, engineering, and computational thinking were all in the mix.

Dr. Tinker delighting in a teacher’s scientific discovery

One could make a compelling argument that Bob Tinker is the father of S.T.E.M. However, I think of him as the Thomas Edison of S.T.E.M. Beyond his remarkable academic preparation, Bob was not resigned to a life of writing pretentious papers to be published in overpriced conference proceedings read by six colleagues. While there was nobody better at writing successful grant proposals, Bob and his colleagues had a stunning track record of “commercializing” their ideas. At both TERC, where he was Director of Educational Technology and The Concord Consortium he founded, Bob Tinker personified Edison’s notion of research AND development. An idea could be tested, refined, manufactured, and distributed in a reasonable timeframe. Unlike so many researchers cloistered in university departments and think tanks, Bob and his colleagues turned ideas into actual products enjoyed by millions of students around the world. Like Edison, Dr. Tinker didn’t work alone. He assembled and led an incredibly competent band of “muckers” who could bring impossible ideas to life.

Those products were sound, timely, reliable, open-ended, fun and teachable without succumbing to “teacher proofing” or dumbing down the science. There was never anything condescending about Dr. Tinker’s prolific work. Bob’s considerable charm and passion undoubtedly played a role in the creation of public/private partnerships, including with The National Geographic and Broderbund, required to successfully distribute his inventions to classrooms and homes everywhere. Bob was also a pioneer in making powerful software tools freely available online. He also preceded the DIY ethos of the maker movement by advocating for the creation of one’s own science probes in 2007!

In Bob’s world, there was no reason to add an A for Arts to S.T.E.M., since the doing of science and mathematics was itself, beautiful, wondrous, playful, creative, and relevant. Papert and Tinker shared a desire for children to be mathematicians and scientists, rather than being taught math or science. They both worked to make complexity possible by making the frontiers of mathematics and science accessible and usable by children. Bob went a step further and created programs where students could collaborate with scientists online as colleagues back in 1989, two years before the World Wide Web was released to the public. My fourth grade class participated in the National Geographic Kids Network Acid Rain project back in 1990.

In an interview Bob said:

“I became inspired to teach by tutoring two kids for two years in a black college in the South. It was the best education (for me!) anyone could design because it showed me exactly how science education could reach far more learners. I’ve dedicated my life to realizing that dream and it’s been wonderful working with smart people who share that dedication. There’s always been a sense of mission. We make important advances that will affect kids all over the world and—this was my initial motivation—bring cutting-edge educational resources to under-resourced kids.”

On a personal note

I do not remember exactly when I first met Bob Tinker, but it was at a conference approximately thirty years ago. Back then, the smartest people in the world spoke at educational computing conferences. I was familiar with his work prior to meeting him. In fact, I was a big fan of The Science Toolkit, distributed by home recreational software publisher, Broderbund. The Science Toolkit was a low-cost ($79 master module with two probes and $39 add-on sets) software package with external sensors that plugged into the joystick port of a microcomputer to allow children to conduct, measure, and record science experiments at home. This was an example of what Bob pioneered and called Micro-Based Labs (MBL).

Check out the video clip from the Christmas 1983 episode of the PBS show Computer Chronicles. Note how clean and simple the software it is and compare it some of the probeware software sold to schools today.

Prior to meeting Bob, I owned my own Science Toolkit. I was especially pleased with myself for figuring out how to program LogoWriter to read data from the kit’s probes without using the accompanying software. I could now write my own programs for collecting data, graphing it, and controlling my own experiments. I nailed using the light sensor, but my temperature data I received wasn’t particularly accurate. I eventually rationalized this as being the fault of the sensor or based on the limitations of the Science Toolkit, despite the fact that the probe worked just fine with the software provided. 

Not much time passed before I ran into Bob Tinker in one of those “V.I.P.” receptions, in the crummy “suite” of the conference chair in the forgettable hotel where the conference was being held. As I told Bob about my struggles with temperature data, he grabbed a napkin and wrote calculus formulas across all of the quadrants of the unfolded napkin. Bob mentioned that reading the temperature data was non-linear, a concept this C- science student could vaguely comprehend. While I never figured out how to translate the napkin math to a working LogoWriter program, Bob’s good cheer, gentle mentoring, and generosity reminded meow something I wrote in an essay a couple of years ago, “Math teachers often made me feel stupid; mathematicians never did.”

Maria Knee & Bob Tinker at CMK 2008

When I started the Constructing Modern Knowledge institute for educators ten years ago, Bob was the first speaker I secured. He had agreed  to return in a few weeks to help us celebrate our 10th anniversary this July.

I will never forget the joy he brought to kindergarten teacher extraordinaire, Maria Knee, who was euphoric while manipulating molecules in software Bob created (The Molecular Workbench). He and his colleagues made the impossible accessible to generations of teachers and children.

I am gutted by Bob’s passing. Losing Bob, Seymour Papert, Marvin Minsky, and Edith Ackermann within an 18-month period is almost too painful to bear. They were fountains of powerful ideas extinguished in anti-intellectual age hostile to science, even wonder. The education community does not enjoy a proud record of honoring the contributions of its pioneers or standing on their shoulders. Instead we continuously rediscover that which already exists, without attribution and with diminished expectations.

More than twenty-five years ago, Seymour Papert and Bob Tinker led a crazy or courageous session at the National Educational Computing Conference in Boston. If memory serves me, the presentation had a title along the lines of “Enemies of Constructionism.” I remember them taking turns placing acetates on the overhead projector proclaiming the name and photo of one of their enemies, including their NSF project manager who happened to be in the audience. This session had to be Seymour’s idea because Bob was too nice, but I suspect that Bob wrote the proposal.

I considered Bob a friend and dear colleague, even though we never really hung out or worked together formally. We often discussed collaborating on an elementary school project of some sort even though Bob modestly claimed not to know anything about little kids. Less than a year ago, Bob introduced me to a colleague and recommended that I be an advisor for an NSF proposal. I was honored to be asked and the grant* has been funded. While searching my email database, I found another proposal Bob himself included me in eleven years ago. I am humbled by his faith in me and respect for my work.

I wonder if ISTE will honor Bob in any way or if they even know who he is? I still await even a tweet about the passing of Dr. Papert. Like Papert, Bob Tinker was never invited to be a keynote speaker at ISTE or its predecessor, NECC.

Rest-in-power Bob. We will miss you forever and the struggle against ignorance continues!


Seminal articles by Robert Tinker, Ph.D.

Read more by searching for Tinker.

The Concord Consortium is assembling a collection of tributes to Bob Tinker here.

Read Bob Tinker’s Wikipedia page.

Notes

* Read the text of the funded NSF proposal, Science and Engineering Education for Infrastructure Transformation.

 

This June’s ISTE Conference will be my thirtieth ISTE (formerly NECC) conferences as a speaker. I suspect that I have been part of 60-80 presentations at this conference over that period – a record few if any can match. I was also part of the keynote session at NECC 2009. (watch it here)

This year’s accepted presentations are an eclectic mix. I will be sharing the stage with Sylvia Martinez about making and maker spaces. My personal sessions reflect two of my passions and areas of expertise; using technology in the context of the Reggio Emilia Approach and Logo programming.

The Reggio Emilia Approach emerges from the municipal infant/toddler centers and preschools of the Italian city, Reggio Emilia. These schools, often referred to as the best schools in the world, are a complex mix of democracy, creativity, subtlety, attention to detail, knowledge construction, and profound respect for children. There are many lessons to be learned for teaching any subject at any grade level and for using technology in this remarkable spirit. Constructing Modern Knowledge has done much to bring the Reggio Emilia Approach to edtech enthusiasts over the past decade.

I began teaching Logo programming to kids and teachers 35 years ago and even edited the ISTE journal, Logo Exchange (killed by ISTE). There is still no better way to introduce modern powerful ideas than through Logo programming. I delight in watching teachers twist their bodies around, high-fiving the air, and completely losing themselves in the microword of the turtle. During my session, I will discuss the precedents for Logo, demonstrate seminal programming activities, explore current dialects of the language, celebrate Logo’s contributions to education and the computer industry, ponder Logo’s future, and mourn the recent passing of Logo’s father, Dr. Seymour Papert.

Without Logo there might be no maker movement, classroom robotics, CS4All, Scratch, or even software site licenses.

So, what do making, Logo, and the Reggio Emilia approach have in common? Effective maker spaces have a lot to learn about preparing a productive context for learning from the educators of Reggio Emilia. Papert and the Reggio community enjoyed a longstanding mutual admiration while sharing Dewey, Piaget, and Vygotsky at their philosophical roots. Logo was used in Reggio Emilia classrooms as discussed in a recent translation of a book featuring teachers discussing student projects as a window into their thinking with Loris Malaguzzi, the father of the Reggio Emilia approach. One of the chapters in Loris Malaguzzi and the Teachers: Dialogues on Collaboration and Conflict among Children, Reggio Emilia 1990 explores students learning with Logo.

Gary Stager’s ISTE 2017 Presentation Calendar

Before You Build a Makerspace: Four Aspects to Consider [panel with Sylvia Martinez]

  • Tuesday, June 27, 1:45–2:45 pm CDT
  • Building/Room: 302A

Logo at 50: Children, Computers and Powerful Ideas

  • Tuesday, June 27, 4:45–5:45 pm CDT
  • Building/Room: Hemisfair Ballroom 2

Logo, the first computer programming language for kids, was invented in 1967 and is still in use around the world today. This session will discuss the Piagetian roots of Logo, critical aspects of its design and versions today. Anyone interested in CS4All has a lot to learn from Logo.

Logo and the fifty years of research demonstrating its efficacy in a remarkable number of classrooms and contexts around the world predate the ISTE standards and exceed their expectations. The recent President of the United States advocated CS4All while the standards listed above fail to explicitly address computer programming. Logo catalyzed a commitment to social justice and educational change and introduced many educators to powerful ideas from artificial intelligence, cognitive science, and progressive education.

Learning From the Maker Movement in a Reggio Context

  • Wednesday, June 28, 8:30–9:30 am CDT
  • Building/Room: 220

Discover how the Reggio Emilia Approach that is rooted in a half-century of work with Italian preschoolers and includes profound, subtle and complex lessons from intensely learner-centered classrooms, is applicable to all educational settings. Learn what “Reggio” teaches us about learning-by-making, making learning visible, aesthetics and PBL.

Direct interview requests to gary [at] stager.org


Gary Stager is the founder of the Constructing Modern Knowledge summer institute for educators July 11-14, 2017, coauthor of Invent To Learn – Making, Tinkering, and Engineering in the Classroom, and curator of the Seymour Papert archive site, DailyPapert.com. Register today for Constructing Modern Knowledge 2017!

I have often wondered why educators are so darn excited about Google. They get “Google Certified,” attend Google conference sessions, mourn when features change or Google loses interest in a platform they LOVE(d). Google loving teachers attend summits that are a cross between an Amway convention and cult meeting. Districts trust their communications and document storage to a company they know harvests their data (and that of their students) just to save a few bucks on an email server. School leaders have never met Mr. Google or any of his designees, but trust them anyway.

Millions upon millions upon millions of dollars are spent annually on teaching seemingly competent adult educators to in the words of President George W. Bush, “use the Google.”

Now, don’t get me wrong. The Google is a swell thing. You type something into a box and related web pages are displayed – just like the search engines that came before it. Google PhotoScan is a little piece of magic for rescuing and preserving family photos. We trust Google a lot and have become reliant on a faceless corporation who can change the terms of service or kill a platform we rely on at the drop of a hat.

One of my favorite tweets of all time was when I asked, “Which should I care less about, Google Wave or Google Buzz?” It turns out that I hit the exacta when Google quickly took both Wave and Buzz behind the barn and shot them Gangnam Style. I get the sense that Google operates like libertarian toddlers who just finished a jumbo box of Lucky Charms cereal right before their community theatre performance of Lord of the Flies.

Mad at me yet? No? OK. Good. Let’s move on.

The one Google thingy that schools really love is Google Docs. Boy, do they love Google Docs.

I have long wondered why? We have had word processors for thirty-five years. Most computers come with a free one adequate for most school applications and there are certainly better “Office” suites available. Many schools already own them.

So, why oh why the love affair with Google Docs? I offer a few hypotheses.

Here are the Top Three Reasons Why Schools Love Google Docs. [Drum roll please…]

  1. Google is cool. The Googleplex has vegan cafeterias, free dry cleaning, massage chairs, AND Ping-Pong tables. I wish our teacher’s lounge had a Pachinko machine and an assortment of herbal teas. That would make me cool too!
  1. Nuthin’ cheaper than free

and the number one answer why schools love Google Docs is….

  1. Collaboration!!!!!!

Collaboration is nice. Schools like nice. Being collaborative is what nice people do when they want to create nice things.

We have been here before

In the late 1980s, collaboration was all of the rage, but back then it was called cooperative learning. Cooperative learning. A school district sent me to a Robert Slavin Cooperative Learning Boot Camp run by Johns Hopkins University. Like any good boot camp, its intent was to beat us down and build us back up again as champions of cooperative learning. Colleagues were immediately separated so they could not question the dogma or rebel in any way. We learned to “jigsaw” boring and irrelevant curricula.

We were taught to create student teams of four kids; always four kids. The teams should be comprised of a smart kid, a dumb kid, a girl, a boy, a Black kid, a White kid, a skinny kid, a fat kid… Each team should stay together with their desks side-by-side for six weeks, always six weeks. If we did this, spelling test scores would improve.

Of course, during that prehistoric era, Google engineers were not even old enough to disrupt their own Waldorf schools. So, sadly there were no Google Docs to create multiplication flash cards or use all of our vocabulary words in a sentence. The word-processed five-paragraph essay in the cloud would have to wait.

TRIGGER WARNING!

Since 90% of what schools do is Language Arts and 98% of what they do with computers is language arts[1], Google Docs is mostly used for writing, but its secret power is collaborative writing.

I am a professional writer. (Not that you can tell from this essay) I am the author of hundreds of magazine articles, about as many blog posts (yeah, big whoop), a 450,000 word doctoral dissertation, countless academic papers, and co-authored one of the best-selling books about educational technology.

All of this qualifies me to say something heretical. (IMHO)

Writing is not collaborative!

(Please take a deep breath before declaring me a big meanie poo-poo head.)

You may write different parts of something and smush them together. You may peer-edit. You may create an anthology or periodical containing writing by several people, but writing is a solo sport. Writing is the result of one person’s internal processes.

Collaboration is more than simply the division of labor. It should not be taught as an isolated skill or coerced. Sadly, like many seemingly good ideas, schools seek to mechanize collaboration by turning natural process into a set of measurable skills and multi-year course of study, easily assessed. Some children win, while others fail.

Teams are created by teachers drawing Popsicle sticks with kids’ names written on them (until the teacher doesn’t like a random pairing and “fixes” it.) Students sense the capricious nature of this process and waste precious class time working the refs to get assigned teammates they like. Working with people with whom you are compatible is a logical idea frequently squelched by school “collaboration.”

Back in the halcyon days of Cooperative Learning™, a reporter for the long-defunct Electronic Learning Magazine asked Seymour Papert an intentionally softball question, “What do you think of Cooperative Learning?” Papert replied, “I think it is a profoundly bad idea to force children to work together.”

Oooh! Snap!

Collaboration should be natural

Cooperation and collaboration are natural processes. Such skills are useful when the creative process benefits from interdependence. The best collaboration mirrors democracy when individual talents, knowledge, or experiences are contributed to produce something larger than the sum of its parts.
Work with your friends. Work with people you trust. Work with people who have different skills or expertise. If that doesn’t produce the result you desire, you will find others to collaborate with. That is how you learn to collaborate. You may teach it, but the students will not stay taught.

Honestly, I could not care less about whom my students (kids or adults) choose to work with. The only reason to assign group size is scarcity of materials (we have to share). Even in those largely avoidable scenarios, it hardly matters if group size varies a bit. The main consideration is inactivity by some members when a group is too large.

Collaboration is both selfish and selfless. You give of yourself by sharing your talent and expertise, but the collaboration should benefit you as well.

Collaboration should be fluid

One of the great joys of Constructing Modern Knowledge derives from the range of collaboration on display at my annual institute. At the start, participating educators suggest a vast array of project ideas ranging from the sublime to the ridiculous. Participants identify which project they wish to work on and commence collaboration. If a person loses interest, becomes inspired by another project, or is incompatible with a teammate, they are free to join a different project or start a new one. Some people move effortlessly between multiple project teams; learning even more.

When projects are shared at the end of four days, three to five person teams have created the majority of projects, some may have a dozen or more collaborators, and we often discover delightful projects created by someone who quietly sat in the corner and worked alone.

I have been fortunate to learn a great deal about what I know about learning from some of the world’s best jazz musicians. Those who are expert at what they do, like musicians, artists, and scientists, pursue greatness by working tirelessly on what bugs them. That continuous and indefinite attention to detail makes them incredibly good at articulating how it is that they do what they do. In other words, they are great teachers.

The very fine jazz pianist and educator Peter Martin recently interviewed saxophonist Branford Marsalis and vocalist Kurt Elling about their remarkable collaboration, “Upward Spiral” (recording and tour). Marsalis and Elling are both highly accomplished A-list artists with their own working bands and artistic concepts. Yet, they have decided to spend a couple of years putting “their thing” on hold to create something new, wondrous and collaborative in the best, most natural, sense of the word. The music they create together on stage is transcendent and not to be missed.

During Peter Martin’s podcast, my old friend Branford Marsalis shares his profound concept of collaboration and juxtaposes it against the version so often practiced in schools. There is much to be learned here.

“The whole idea of a collaboration (to me) is that nobody gets to do what is that they do. The modern interpretation of collaboration is I know what you do. You do know what I do. Let’s get a head start and run real fast and collide into one another and whatever spills out over the side is the collaboration.” – Branford Marsalis

True collaboration is great. It’s even better than a free word processor.


Notes:
[1] I pulled those figures out of my bum, but I have been doing so for decades and no one has been able to disprove this completely fabricated assertion.



Gary Stager is the founder of the Constructing Modern Knowledge summer institute for educators July 11-14, 2017, coauthor of Invent To Learn – Making, Tinkering, and Engineering in the Classroom, and curator of the Seymour Papert archive site, DailyPapert.com.

Register today for Constructing Modern Knowledge 2017!

Back in the late Eighties, there was a Logo Conference held in Los Angeles. After a wild night reminiscent of Martin Scorsese’s 1985 film, “After Hours,” longtime Papert collaborator Brian Silverman and I found ourselves locked out of where we were supposed to sleep.

Seymour Papert & Gary Stager in Sydney, 2004

Ever the problem solver, Brian said, “Seymour always has a big room. We can sleep there.”

So, we drove back across town and woke Seymour before 5 AM. Despite our discourteous invasion and before we went off to sleep, Papert offered a bit of profundity that withstands the test of time.

One of the people we had been partying with earlier in the evening was teacher, turned software developer, Tom Snyder. Brian remarked something along the lines of, “Tom is a good guy.” Seymour disagreed and said that he viewed the world of educational technology as a triangle with Alfred Bork, Tom Snyder, and himself (Papert) in each of the vertices.  Papert went on to say that each of the three men possess a stance that views technology as benefitting one of three constituents in the educational system.

Alfred Bork was notorious for saying that teachers had low SAT scores, were not very bright, and any future teacher shortage would be corrected by replacing teachers with teaching machines. Today’s online testing, “personalized instruction,” and other dystopian systems concerned with delivery, testing, surveillance, and accountability are manifestations of Bork’s fantasies.

Tom Snyder was a fledgling educational software designer in the late 1980s trying to make payroll and in need of a catchy marketing niche. He looked around and found that most classrooms had one computer. So, he decided to make software for the “one computer classroom.” In this scenario, the teacher was an actor, the classroom was a set, and the computer was a prop for engaging in whole class or small group problem solving. Oddly, this practical marketing slogan born from a shortage of computers nearly thirty years ago remains an enduring metaphor for classroom computer use. The “interactive” whiteboard is one example. (Some of Tom’s software is still available)

A Choice Must Be Made

Seymour Papert believed in the late 1960s that every child would and should have a personal computer with which to mess about with powerful ideas, create, and collaborate.

These three points of view described by Papert in the middle of the night described how technology is not neutral and in an educational setting, it always grants agency to one of three actors; the system, the teacher, or the student. Papert’s disciples see the greatest benefit arising from granting maximum agency to the learner.

Technology is never neutral. An incredibly clever teacher might be able to pull a technology a little bit between the vertices in the triangle, but that doesn’t change the equation. Educators need to decide upon whom they wish to bestow agency. I’m in Papert’s corner. It is best for learners and enjoys the greatest return on investment.


Gary Stager is the founder of the Constructing Modern Knowledge summer institute for educators July 11-14, 2017, coauthor of Invent To Learn – Making, Tinkering, and Engineering in the Classroom, and curator of the Seymour Papert archive site, DailyPapert.com.

Register today for Constructing Modern Knowledge 2017!

 

Dr. Gary Stager was invited to write a profile of his friend, colleague, and mentor Dr. Seymour Papert for the premiere issue of Hello World!, an impressive new magazine for educators from The Raspberry Pi Foundation. This new print magazine is also available online under a Creative Commons license.

I suggest you explore the entire new magazine for inspiration and practical classroom ideas around the Raspberry Pi platform, “coding,” problem solving, physical computing, and computational thinking.

Gary’s article was cut due to space limitations. However, the good news, for anyone interested, is that the full text of the article appears below (with its original title).

See page 25 of the Hello World! Magazine

Seymour Papert Would have Loved the Raspberry Pi!

When Dr. Seymour Papert died in July 2016, the world lost one of the great philosophers and change-agents of the past half-century. Papert was not only a recognized mathematician, artificial intelligence pioneer, computer scientist, and the person Jean Piaget hired to help him understand how children construct mathematical knowledge; he was also the father of educational computing and the maker movement.

By the late 1960s, Papert was advocating for every child to have its own computer. At a time when few people had ever seen a computer, Papert wasn’t just dreaming of children using computers to play games or be asked quiz questions. He believed that children should program the computer.  They should be in charge of the system; learning while programming and debugging. He posed a fundamental question still relevant today, “Does the child program the computer or does the computer program the child?”  Along with colleagues Cynthia Solomon and Wally Feurzig, Papert created Logo, the first programming language designed specifically for children and learning.  MicroWorlds, Scratch, and SNAP! are but a few of the Logo dialects in use fifty years later.

Papert’s legacy extends beyond children programming, despite how rare and radical that practice remains today. In 1968, Alan Kay was so impressed by the mathematics he witnessed children doing in Logo that he sketched the Dynabook, the prototype for the modern personal computer on his flight home from visiting Papert at MIT.  In the mid-1980s, Papert designed the first programmable robotics construction kit for children, LEGO TC Logo. LEGO’s current line of robotics gear is named for Papert’s seminal book, Mindstorms. In 1993, Papert conjured up images of a knowledge machine that children could use to answer their questions, just like the new Amazon Echo or Google Home. littleBits and MaKey Makey are modern descendants of Papert’s vision.

Prior to the availability of CRTs (video displays), the Logo turtle was a cybernetic creature tethered to a timeshare terminal. As students expressed formal mathematical ideas for how they wished the turtle to move about in space, it would drag a pen (or lift it up) and move about in space as a surrogate for the child’s body, all the while learning not only powerful ideas from computer science, but constructing mathematical knowledge by “teaching” the turtle. From the beginning, Papert’s vision included physical computing and using the computer to make things that lived on the screen and in the real world. This vision is clear in a paper Cynthia Solomon and Seymour Papert co-authored in 1970-71, “Twenty Things to Do with a Computer.”

“In our image of a school computation laboratory, an important role is played by numerous “controller ports” which allow any student to plug any device into the computer… The laboratory will have a supply of motors, solenoids, relays, sense devices of various kids, etc. Using them, the students will be able to invent and build an endless variety of cybernetic systems. “ (Papert & Solomon, 1971)

This document made the case for the maker movement more than forty-five years ago. Two decades later, Papert spoke of the computer as mudpie or material with which one could not only create ideas, art, or theories, but also build intelligent machines and control their world.

From his early days as an anti-apartheid dissident in 1940s South Africa to his work with children in underserved communities and neglected settings around the world, social justice and equity was a current running through all of Papert’s activities. If children were to engage with powerful ideas and construct knowledge, then they would require agency over the learning process and ownership of the technology used to construct knowledge.

“If you can make things with technology, then you can make a lot more interesting things. And learn a lot more by making them.” – Seymour Papert (Stager, 2006)

Programming computers and building robots are a couple examples of how critical student agency was to Papert.  He inspired 1:1 computing, Maine becoming the first state on earth to give a laptop to every  7th & 8th grader, and the One Laptop Per Child initiative.

 “…Only inertia and prejudice, not economics or lack of good educational ideas stand in the way of providing every child in the world with the kinds of experience of which we have tried to give you some glimpses. If every child were to be given access to a computer, computers would be cheap enough for every child to be given access to a computer.” (Papert & Solomon, 1971)

It made Papert crazy that kids could not build their own computers. When we worked together (1999-2002) to create an alternative project-based learning environment inside a troubled teen prison, we bought PCs hoping that the kids could not only maintain them, but also eventually build their own. Despite kids building guitars, gliders, robots, films, computer programs, cameras, telescopes, and countless other personally meaningful projects uninterrupted for five hours per day – a “makerspace” as school. Back then, it was too much trouble to source parts and build “personal” computers.

In 1995, Papert caused a commotion in a US Congressional hearing on the future of education when an infuriated venture capitalist scolded him while saying that it was irresponsible to assert that computers could cost $100, have a lifespan of a decade, and be maintained by children themselves.  (CSPAN, 1995) Later Papert would be fond of demonstrating how any child anywhere in the world could repair the $100 OLPC laptop with a single screwdriver. Before Congress, he asserted that computers only seem expensive when accounting tricks compare them to the price of pencils. If used in the expansive ways his projects demonstrated, Papert predicted that “kid power” could change the world.

The Raspberry Pi finally offers children a low-cost programmable computer that they may build, maintain, expand, and use to control cyberspace and the world around them. Its functionality, flexibility, and affordability hold the promise of leveraging kid power to put the last piece in the Papert puzzle.

References:
CSPAN (Producer). (1995, 12/1/16). Technology In Education [Video] Retrieved from https://www.c-span.org/video/?67583-1/technology-education&whence=

Papert, S., & Solomon, C. (1971). Twenty things to do with a computer. Retrieved from Cambridge, MA:

Stager, G. S. (2006). An Investigation of Constructionism in the Maine Youth Center. (Ph.D.), The University of Melbourne, Melbourne.

Read more


On Christmas Eve (2016), the world lost one of its most profound thinkers when learning theorist, Dr. Edith Ackermann, left us at age 70. Anyone blessed with even the most casual encounter with Edith embraced her as a mentor, collaborator, and friend. She bestowed boundless respect upon anyone trying to make the world more beautiful, just, or creative. Edith’s grace danced into a room like a cool breeze awakening its occupants and setting their sights towards what truly matters.

Edith was a giant among learning theorists, even if under-appreciated and a best kept secret. Her work focused on the intersection of play, design, childhood, and technology. She worked closely with Jean Piaget, Seymour Papert, and Ernst von Glasersfeld – three of the most important experts on learning ever. Her insights were invaluable to the LEGO Company, MIT students, architects, and educators around the world.

Edith was always there to help me clarify my thinking and to take an idea one stop past my anticipated exit. She was a pal with whom you could walk arm in arm discussing almost anything, laugh boisterously, and gossip quietly. We disliked many of the same ideas and people, but Edith was just much better at hiding her disdain.

Perhaps, Edith’s remarkable perspective came from being an outsider. Despite the profound impact she had on innumerable students and colleagues, I never got the sense that the testosterone-oozing world of MIT afforded her the respect or security she so richly deserved.

Shamefully, I do not know much about Edith’s history or personal life; yet another painful reminder that we should do everything possible to know our friends better. Therefore, I will share some thoughts about her work and what she meant to me.

CMK Intern Walter explains Pokemon Go to Edith

I don’t remember when I first met Edith. I think it was in 2000 when Seymour Papert sent me to sub for him as the keynote speaker at a conference held at the Piaget Archives in Geneva. Papert failed to tell the organizers that 1) he wasn’t coming or 2) that I was his replacement. The entire story is a hilarious comedy of errors that I’ll share another day.

Edith and I attended many EuroLogo (now Constructionism) Conferences and worked together 15+ years ago in Mexico City leading a workshop as members of the MIT Media Lab’s Future of Learning Group. Several years ago, I invited Edith to be a guest speaker at my 2014 Constructing Modern Knowledge institute. I set aside concerns that her Swiss accent, quiet demeanor, and brilliant intellect would not work in a room full of predominantly American educators. Her unrivaled genius made the risk worthwhile.

Edith’s wisdom, passion, humanity, and generosity of spirit made her an immediate favorite of the very educators who others treat as low-skill labor in need of a 7-step plan for raising achievement. The next year, Edith spent most of the institute with us interacting informally with participants and appearing on a panel discussion with two of my other heroes, David Loader and Deborah Meier. Last summer, despite her ongoing battle with Cancer, Edith Ackermann spent all four days of CMK helping each of us make meaning out of our individual and collective experiences.

Heroes – David Loader, Deborah Meier, & Edith Ackermann

Edith taught us so much.

Making as a way of seeing

One powerful idea she shared was that “Making is a way of seeing.” Edith had a gift for bringing into focus what others miss. She invited us to “lean in,” not in the vulgar career climbing form advocated by Sheryl Sandberg, but as a way of becoming one with nature, the community, ideas, beauty, and one’s soul.

I would like to share three very special memories of Edith Ackermann at Constructing Modern Knowledge.

2016
After nine years of effort, I managed to convince Reggio Children President Carla Rinaldi to participate in Constructing Modern Knowledge. Edith and Carla were old friends who greeted each other with great love and respect. Their mutual affection was truly touching. During the institute, I stole a little time to show Carla and Edith how Tickle (an iOS dialect of Scratch) could be used to bring drones and a variety of robots to life. They appreciated the technological wizardry for a split second and then became preschoolers imagining how the different toys could play, communicate and love one another. Both experts were so in tune with the inner lives of children that they were able to wear the spirit of childhood play with great ease and abundant joy.

Edith and Carla Rinaldi playing

Hard fun!

2015
A tacit theme of Constructing Modern Knowledge involves creating the conditions by which each participating educator may think about how their particular learning experience connects with their own priory experience and future classroom practice. Superficially, our speakers may seem to have nothing to do with one another or the sorts of project work undertaken by CMK attendees. In 2015, I invited two National Endowment for the Arts Jazz Masters, 86 year-old pianist Barry Harris and 89 year-old saxophonist Jimmy Heath, to perform a masterclass at CMK. Edith not only understood immediately why I invited them to perform at an event about learning and making, but she was thrilled to spend time with Barry Harris whose music she knew. Edith had also watched videos of Barry teaching. Just take a look at the joy with which she approached this encounter.

Edith with the great Barry Harris

2014
I work all year organizing Constructing Modern Knowledge and try to steal an hour to indulge a passion of mine, taking great friends and colleagues to Cremeland, an “al fresco” roadside stand in Manchester, New Hampshire known for its fabulous fried fish and ice cream. The first year Edith joined the CMK team, I took her and a couple of colleagues for our secret lunch at Cremeland. You order food at one window, eat at picnic tables in the parking lot, and then return to a window at the opposite end of the building for decadent ice cream.

There is always a bit of chaos when a group of people are ordering from an unknown menu through a tiny window, but throw Edith’s Swiss accent into the mix and watch hilarity ensue.

Server: Can I take your order?
Edith: I’ll have the haddock platter.
Server: Hot Dog?
Edith: Haddock
Server: Hot Dog?
Edith: Haddock
Server: Hot Dog?
Edith: NO! Haddock not Hot Dog!

Haddock, not hot dog!

Fried fish & ice cream with great friends

This became a private joke between us and when I gave the CMK faculty and speakers t-shirts with chalkboards printed on them, Edith wrote, “Haddock, not hot dog,” on hers.

Au revoir dear Edith…. We love you and will miss you more than you could ever know.


For further reading…

Exploratorium Talk – The craftsman, The trickster, and the Poet — Conference Art as a way of knowing. San Francisco, 2011

Constructionism 2010 Talk – Constructivism(s): Shared roots, crossed paths, multiple legacies

iste-charter

Dear Dr. Williams:

Thank you so much for being the first ISTE executive or board member to address the sad state of affairs expressed by my old friend and mentor David Thornburg. It is disappointing that David’s proposal was rejected. Dr. Thornburg is a pillar of educational computing.

I am grateful to David for bringing attention to ISTE’s non-existent response to the life and death of Seymour Papert. It is worth noting that the father of our field, Dr. Papert, was never invited to keynote ISTE or NECC; not after the publication of his three seminal books, not after the invention of robotics construction kits for children, not after 1:1 computing was borne in his image in Australia, not after Maine provided laptops statewide, not when One Laptop Per Child changed the world. This lack of grace implies a rejection of the ideas Papert advocated and the educators who had to fight even harder to bring them to life against the tacit hostility of our premiere membership organization.

One would imagine that a conference dedicated to linoleum installation would eventually have the inventor of linoleum to address its annual gathering. Last year (2015), ISTE rejected my proposal to lead a session commemorating the 35th anniversary of Papert’s book Mindstorms and the 45th anniversary of the paper he co-authored with Cynthia Solomon, “Twenty Things To Do with a Computer.” See the blog post I wrote at the time.

Such indifference was maddening, but the failure of the ISTE leadership to recognize the death of Dr. Papert this past July, even with a tweet, is frankly disgraceful. After Papert’s death, I was interviewed by NPR, the New York Times and countless other news outlets around the world. I was commissioned to write Papert’s official obituary for the prestigious international science journal Nature. Remarkably, unless I missed it, ISTE has failed to honor Dr. Papert in any way, shape, or form. I have begged your organization to do so in order to bring his powerful ideas to life for a new generation of educators. These actions should not be viewed as a grievance or form of attention seeking. ISTE’s respect for history and desire to provide a forum for the free exchange of disparate ideas are critical to its relevance and survival.

Dr. Papert himself might suggest that ISTE is idea averse. In its quest to feature new wares and checklists, it neglects to remind our community that we stand on the shoulders of giants. Earlier this year, I was successful in convincing NCWIT to honor Papert’s colleague, Dr. Cynthia Solomon, with its Pioneer Award. If only I could be so persuasive as to convince ISTE to honor the “mother of educational computing” before it’s too late. As we assert in our book, Invent To Learn, without Papert and Solomon there is no 1:1 computing, no Code.org, no CS4All, no school robotics, no maker movement.

In light of Papert’s recent passing, and the remarkable 50th anniversary of the Logo programming language in 2017, I submitted two relevant proposals for inclusion on the 2017 ISTE Conference Program.

You guessed it. Both were rejected.

Anniversaries and deaths are critical milestones. They cause us to, pause, reflect, and take stock. In 2017, there are several major conferences, including one I am organizing, focused on commemorating Papert and the 50th birthday of Logo. Sadly, ISTE seems to be standing on the sidelines.

It is not that I have nothing to offer on these subjects or do not know how to 1) write conference proposals or 2) fill an auditorium. As someone who has worked to bring Papert’s powerful ideas to life in classrooms around the world for 35 years and who worked with Papert for more than two decades, I have standing. I edited ISTE’s journal dedicated to the work he began, was the principal investigator on Papert’s last major institutional project, gave a TEDx talk in India on his contributions, and am the curator of the Seymour Papert archives at dailypapert.com. I worked in classrooms alongside Seymour Papert. Last year, 30 accepted ISTE presentations cited my work in their bibliographies.

logo-exchange-its-alive-cover

I am often asked why I don’t just give up on ISTE. The answer is because educational computing is my life’s work. I signed the ISTE charter and have spoken at 30 NECC/ISTE Conferences. It is quite possible that no one has presented more sessions than I. For several years, I was editor of ISTE’s Logo Exchange journal and founded ISTE’s SIGLogo before it was killed by the organization. I have been a critical friend for 25 years, not to harm ISTE, but to help it live up to its potential.

For decades, David Thornburg and I have spoken at ISTE/NECC at our own expense. This is just one way in which I know that we are both committed to what ISTE can and should be. I have also written for ISTE’s Learning and Leading with Technology.

It would be my pleasure to discuss constructive ways to move forward.

Happy holidays,

Gary

Gary S. Stager, Ph.D.
CEO: Constructing Modern Knowledge
Co-author: Invent To Learn – Making, Tinkering, and Engineering in the Classroom

PS: Might I humbly suggest that ISTE hire or appoint a historian?