I hope that anyone reading this is healthy and sane during this period of uncertainty. Teachers and kids alike are grieving over the loss of freedom, social interactions, and normalcy. Many families, even those never before considered at-risk, are terrified of the potential for financial ruin or catastrophic health risks. Since I’m all about the love and spreading optimism, I humbly share a silver-lining for teachers and the kids that they serve.

The fact that you are being told to “teach online” in some vague version of “look busy” may mean that teachers are finally being trusted. Districts large and small are abandoning grading as they recognize that education (at home) is inequitable. I guess it’s better late than never to discover the obvious.

Parents and superintendents are vanquishing the needless infliction of nonsense known as homework. Standardized testing is being canceled, an actual miracle. Colleges have recognized that enrolling students next Fall is more important than SAT or ACT scores. Each of these emergency measures has been advocated by sentient educators forever.

So, there is reason to celebrate (briefly), but then you must act! Use this time to remake schooling in a way that’s more humane, creative, meaningful, and learner-centered. This is your moment!

In the absence of compelling models of what’s possible, the forces of darkness will fill the void. Each of us needs to create models of possibility.

The fact that kids’ days are now unencumbered by school could mean that they finally have adequate time to work on projects that matter rather than being interrupted every 23 minutes. I recently wrote, What’s Your Hurry?, about teaching computer programming, but it’s applicable to other disciplines.

Project-based learning offers a context for learner-centered pedagogy. I was reminded that the new edition of our book, “Invent To Learn – Making, Tinkering, and Engineering in the Classroom,” includes several chapters on effective prompt setting that may be useful in designing projects for kids at home. Invent To Learn also lays out the case for learning-by-doing. Use that information to guide your communication with administrators, parents, and the community.

The following are but a few suggestions for seizing the moment and reinventing education after this crisis is resolved so we may all return to a new, better, normal.

Practice “Less us, more them”

Anytime a teacher feels the impulse to intervene in an educational transaction, it is worth pausing, taking a breath, and asking, “Is there less that I can do and more that the student(s) can do?” The more agency shifted to the student, the more they will learn.

One exercise you can practice teaching online, as well as face-to-face, is talk less. If you typically lecture for 40 minutes, try 20. If you talk for 20 minutes, try 10. If you talk for 10, try 5. In my experience, there is rarely an instance in which a minute or two of instruction is insufficient before asking students to do something. While teaching online, try not to present content, but rather stimulate discussion or organize activities to maximize student participation. Piaget reminds us that “knowledge is a consequence of experience.”

Remember, less is more

My colleague Brian Harvey once said, “The key to school reform is throw out half the curriculum – any half.” This is wise advice during sudden shift to online teaching and the chaos caused by the interruption of the school year.

Focus on the big ideas. Make connections between topics and employ multiple skills simultaneously. Abandon the compulsion to “deliver” a morbidly obese curriculum. Simplify. Edit. Curate.

Launch students into open-ended learning adventures

Learning adventures are a technique I became known for when I began teaching online in the 1990s. This process is described in the 2008 paper, Learning Adventures: A new approach for transforming real and virtual classroom environments.

Inspire kids to read entire books

Since the bowdlerized and abridged basals are locked in school, encourage kids to luxuriate with real books! Imagine if kids had the freedom to select texts that interest them and to read them from cover-to-cover without a comprehension quiz or vocabulary lesson interrupting every paragraph! Suggest that kids post reviews on Amazon.com for an authentic audience rather than making a mobile or writing a five-paragraph essay. Use Amazon.com or Goodreads to find other books you might enjoy.

Tackle a new piece of software

Been meaning to learn Final Cut X, Lightroom, a new programming language, or any other piece of sophisticated software? Employ groups of kids to tackle the software alone or together and employ their knowledge once school returns. Let them share what they know and lead.

Contribute to something larger than yourself

This is the time for teachers to support kids in creating big creative projects. Write a newspaper, novel, poetry anthology, play, cookbook, or joke book. Make a movie and then make it better. Create a virtual museum. Share your work, engage in peer editing, and share to a potentially infinite audience.

Check out what Berklee College of Music students have already done!

Teach like you know better

Use this time to rev-up or revive sound pedagogical practices like genre study, author study, process writing, interdisciplinary projects and the other educative good stuff too often sacrificed due to a lack of sufficient time. You now have the time to teach well.

Take note of current events

Daily life offers a world of inspiration and learning invitations. Why not engage kids in developmentally appropriate current events or take advantage of opportunities like JSTOR being open to the public during the COVID-19 crisis? Here’s a possible student prompt.

“Go to JSTOR, figure out how it works, find an interesting article, and share what you learned with the class.”

Let Grow

Change the world by challenging students to learn something on their own by embracing the simple, yet profound, Let Grow school project. A simple assignment asks kids to do something on their own with their parent’s permission and share their experiences with their peers.

Stand on the shoulders of giants

Every problem in education has been solved and every imaginable idea has been implemented somewhere. Teachers should use this time to read books about education written by experts and learn the lessons of the masters.

Take time to enjoy some culture

There is no excuse to miss out on all of the cultural activities being shared online from free Shakespeare from the Globe Theatre, Broadway shows, operas, living room concerts, piano practice with Chick Corea, and exciting multimedia collaborations. Many of these streams are archived on social media, YouTube, or the Web. Bring some peace, beauty, and serenity into your home.

The following are some links, albeit incomplete and subjective, to free streaming cultural events.

Apprentice with the world’s greatest living mathematician

In A Personal Road to Reinventing Mathematics Education, I wrote about how I have been fortunate enough to know and spend time with some of the world’s most prominent mathematicians and that while not a single one of them ever made me feel stupid, plenty of math teachers did. Stephen Wolfram is arguably the world’s leading mathematician/scientist/computer scientist. Over the past few years, he has become interested in teachers, kids, and math education. Dr. Wolfram spoke at Constructing Modern Knowledge, runs an annual summer camp for high school mathematicians, and has made many of his company’s remarkable computational tools available for learners.

Acknowledging that many students are home do to the pandemic this week, Wolfram led a free online Ask Me Anything session about an array of math and science topics, ostensibly for kids, as well as a “follow-along” computation workshop. You, your children, or your students have unprecedented access to all sorts of expertise, just a click away! This is like Albert Einstein making house calls!

A bit of exploration will undoubtedly uncover experts in other disciplines sharing their knowledge and talents online as well.

Abandon hysterical internet policies

The immediate need for laptops, Internet access, student email, plus the expedient use of available technologies like YouTube, FaceTime, Skype, Twitter, Instagram, and Zoom has instantly dispelled the hysterical and paranoid centralized approach to the Internet schools have labored under for the past twenty-five years. The Internet has never been dependent on the policies of your school or your paraprofessional IT staff to succeed. Perhaps we will learn what digital citizenship actually looks like after teachers and children are treated like modern citizens.

Heed Seymour Papert’s advice

When I worked with Seymour Papert, he created a document titled, “Eight Big Ideas Behind the Constructionist Learning Lab.” This one sheet of paper challenges educators to create productive contexts for learning in the 21st Century. Can you aspire to make these recommendations a reality in your classroom(s)?

Do twenty things to do with a computer

In 1971, Seymour Papert and Cynthia Solomon published, Twenty Things to Do with a Computer. How does your school measure up a half-century later?

Program your own Gameboy

Yes, you read that correctly. Here is everything you need to know to write your own computer games, build an arcade, or program a handheld gaming device!

Teach reading and programming simultaneously

Upper elementary and middle school students could learn to program in Scratch and develop their reading fluency at the same time. Learn how in A Modest Proposal.

Share my sense of optimism

Shortly before the COVID-19 crisis, I published, Time for Optimism, in which I shared reasons why progressive education is on the march and how we might teach accordingly. We can do this!

Wash your hands! Stay inside! Stand with children!


Veteran educator Dr. Gary Stager is co-author of Invent To Learn — Making, Tinkering, and Engineering in the Classroom and the founder of the Constructing Modern Knowledge summer institute. He led professional development in the world’s first 1:1 laptop schools and designed one of the oldest online graduate school programs. Learn more about Gary.

One of the most remarkable achievements of American democracy was its provision of free universal compulsory education for all its children and young people. No society had ever committed itself to universal education. The movement to get our children out of the fields and factories led every state by 1918 to set a minimum school leaving age ranging from 16 to 18. . That meant that publically supported high schools had to be available to all communities.

It also meant that schools had to develop ways of serving the full range of differences in language, culture, experiential background , values, goals and ability  among the children coming to our schools . In earlier times the goals of general education were little more than the minimal three r’s with secondary education only to prepare the elite for higher education. To serve all pupils well, new institutions with new curricula had to evolve: schools needed a broad and variable curriculum to serve the all of the nation’s youth including the waves of  young immigrants. 

Much thought went into this curriculum. John Dewey said we could no longer make the students adjust to the school; we had to make the school fit the learners. We needed to prepare all learners for full participation in a democratic society, and also to accept difference, to start where the learners were and carry them as far as they were capable of going. One answer was the comprehensive high school. The central idea was that a single school could serve everyone in a community by offering varied curricula with many choices and options. That was particularly important in small and medium sized towns that could only support a single high school; but it was also important in the large cities. By having all young people in the same school, students could learn to participate in a diverse society. Schools could serve the college bound but they could also provide interesting and challenging sequences for those who would enter the work force when they left school.

The civil rights period extended this concept to eliminate racially segregated schools. New  laws required inclusion of the full range of handicapped and special populations so that the schools were really serving all young people in the public schools of  the community.

It wasn’t a perfect system but it worked well to keep virtually all young people in school, to educate them to a reasonable level, and to provide a unifying experience for new and native born citizens. 

Now, however, there are strong pressures on state and federal levels to move to a one size fits all narrow curriculum. Choices, even for those college bound, have been largely eliminated and every student is required to complete the courses formerly required for those seeking college admission. Advanced math and science courses are required for all that were designed originally for those planning to follow college majors in math and science. And in many states all students have to pass the same tests at the same level to even get a high school diploma.

Ironically, as other developed and developing nations are moving toward universal education and a comprehensive secondary curricula, we ‘re driving pupils out of schools that are no longer willing or able to adjust to their needs and goals. 

On the national level, the punitive No Child Left Behind law is requiring that schools not only narrow the curriculum but that all pupils reach the same high level of achievement previously only reached by the top 10-20 percent. Virtually every school and school district will be labeled as failing by 2014 according to several state studies because they can’t reach these impossible goals.

Our nation needs good mathematicians and scientists. But more than that it needs informed citizens with a broad education who can participate in a democratic society. In an increasingly diverse society we need schools that can adjust to differences among learners.  For that we need to bring back the comprehensive high school.


Scratch is a miracle. It’s popularity as a creative computing environment and its ubiquity around the world are truly impressive. Millions of children use the environment and have shared tens of millions of projects for others to enjoy and remix.

Scratch is a descendent of the Logo programming language. Logo was the first, and I would argue best, programming environment ever designed for children and learning. Logo is over fifty years old. While this would seem to be a million years old in technology years, Logo not only remains powerful in the hands of children, but benefits from a half-century worth of research, project ideas, and collective pedagogical wisdom.

Scratch adds media computation to the Logo bag of tricks available to kids. The sort of storytelling projects created in it appeals to adults who value kids being engaged in creative acts. A large part of Scratch’s appeal is the enormity of its project library full of projects that look like anyone can make them. It is also worth remembering that Scratch was originally designed for use in afterschool programs where teaching could not be guaranteed. Kids look at Scratch and know what to do. These are powerful and legitimate design features that contribute to its popularity.

Logo on the other hand was designed as a vehicle for education reform and created a “microworld” in which children could be mathematicians rather than just be taught math. Kids using Logo often fell in love with mathematics and felt intellectually powerful for the first time. Logo introduced the concept of the turtle, a representation of the child’s place in physical space, and turtle geometry, a math connected to movement in the real world. The turtle matched the intensity of children, captured their imagination, and was their collaborator in constructing mathematical knowledge. In 1968, Alan Kay first imagined the Dynabook, the progenitor of the modern laptop or tablet computer, after observing children programming in Logo. Kay recalls being amazed by the sophisticated mathematics young children were engaged in. Fifty-two years later, I feel the exact same way every time I use Logo with children.

*Today, a 5th grader came bounding up to me to announce, “Look what I accomplished!” She had taught the Logo turtle to draw a fraction, a bit of curricular detritus that normally invokes dread. In the process, she simultaneously demonstrated understanding of fractions, division, angle, linear measurement, and was on the verge of understanding variables all while teaching the turtle to draw. Turtle geometry may be the greatest mathematical prosthetic ever invented for learners. Logo creates a Mathland in which “messing about” and learning mathematics is as natural as a child develops oral language.

Math is the weakest link in every school. It remains the center for misery and instructionism in most. Seymour Papert taught me that the teaching of math ultimately jeopardizes all other efforts at educational progress. There is no gap as wide as the gulf between mathematics – a jewel of human intellect, and school math. Papert believed that even the most progressive schools become undone by the traditional diet and pedagogy of school math. He often discussed the need to create a mathematics children can love, rather than inventing tricks for teaching a “noxious” irrelevant math. Papert convinced me that no matter how project-based or student-centered a school happens to be, there remains a part of the day or week (math time) when coercion is reintroduced into the system. That is ultimately coercive to the nobler aims of the institution. Logo is and has been one of the few Trojan horses available for helping teachers rethink “math” on behalf of the kids they serve.

I fear for the future of such experiences in a world in which software has no value and there is no incentive for modern Logos to be created.

I just spent several hundred words stipulating that Scratch is a good thing. However, decisions were made in the evolution of Scratch that undermine its ability to make mathematics comprehensible, wondrous, relevant, and accessible for learners of all ages. Scratch could maintain fidelity to the powerful ideas inherent in Logo while adding all of the storytelling, animation, and media manipulation in a Web-based programming environment, but the designers of Scratch have decided to do otherwise. In fact, the most recent version, Scratch 3.0, has made it either too difficult or impossible to create the sorts of experiences I desire for my grandchildren and the children I’m privileged to teach.

I truly do not wish to step into the minefield of arguing about everyone’s favorite software, but my concerns are legitimate. I know readers may be thinking, “Hey, design your own software if you love Logo so much!” This is impossible in a world in which software has no value and there is no incentive for modern Logos to be created. Scratch benefits from mountains of government, university, and corporate funding, making it the 900-pound gorilla in coding for kids. That’s a good thing, but it could be better. My hope is that as Scratch evolves, consideration is given to bringing back some of the powerful mathematical ideas that have been lost.

Let me get specific. The following examples are a non-exhaustive list of the ways in which Scratch makes my life more difficult as a teacher and teacher educator concerned with providing authentic mathematical experiences.

Putting the turtle out to pasture
Perhaps the most enduring and kid-imagination-capturing metaphor of Logo programming goes like this:

[Teacher] “The turtle has a pen stuck in its belly button. What do you think happens when it drags its pen?”

[Kids] It draws!

This sounds simple, but is at the heart of what makes Logo a powerful, personal experience. Placing a transitional object representing ourselves inside of the machine is an instant personal invitation to programming. Drawing, with a crayon, pencil, or turtle is the protean activity for representing a child’s thinking.

Drawing or painting with the mouse is fine but denies children opportunities to express mathematical formalisms in service of drawing. There is fifty years’ worth of scholarship, joy, and powerful ideas associated with turtle graphics – often a user’s first experience with thinking like a mathematician and debugging.

Scratch 3.0 inexplicably demotes its pen blocks (commands) to software extensions. The extensions are hidden until the user un-hides them. All of the other Scratch 3.0 extensions support either external hardware control or more advanced esoterica like interactive video, language translation, or text-to-speech functionality. I appreciate that part of Scratch’s success is its clean design and lack of clutter. However, pen blocks are seminal and were integrated into previous versions. This design decision has several negative consequences.

  • It complicates the possible use of turtle graphics by requiring finding the location of the extensions button and clicking on the pen extensions
  • It implies that turtle graphics (drawing) is not as valuable a form of expression as animation.
  • The symbol on the extensions button is highly non-intuitive.
  • The pen blocks, once the extension is loaded, appear near the bottom of the block palettes, far from the motion blocks they rely on. This makes block programming cumbersome when the focus is turtle geometry.

The turtle has a pen stuck in its nose? Ouch!
In Scratch, the sprite draws from the perimeter of its shape, not its center. This makes precise movement, predictions about distances, and drawing precision much more difficult.

There are no turtle costumes for sprites
The turtle head points in the direction that matches “Forward” commands. This is obvious to even the youngest programmers. In Scratch, even if one wanted to use the turtle, there are no turtle costumes. Neither the turtles found in systems, like Turtle Art, MicroWorlds,  Lynx , or even the old 70s-80s era turtle  are provided. While it is possible to design your own Scratch costumes, you would be required to do so for every project, rather than merely adding sprite costumes to the system.

It is easy to explain that the “turtle may wear other costumes you design,” telling the kids that “the sprite could be a turtle that you can dress in custom costumes,” adds needless complexity.

No Clean, CG, Home, or CS
Nearly every other version of Logo has a Clean command for erasing the screen, CG, or CS for erasing the screen and repositioning the turtle at the center of the screen with a compass orientation of zero. Commonly found, HOME commands, send the turtle back to the center of the screen at coordinates, [0 0]. These are all simple concepts for even young children to quickly grasp and use.

Scratch’s pen extension Erase All block wipes the screen clean, but neither returns the sprite to home nor reorients a “dizzy turtle.”

Program for clearing the screen and sending the turtle/sprite home

Sure, if a teacher wants students to have a block performing the roles of Clearscreen, Scratch allows them to Make a Block.

The problem with doing so is that Scratch leaves the blocks you create, complete with their instructions, in the blocks palette – cluttering up your workspace. The definition of the “new” block cannot be hidden from users, even when the new block appears under My Blocks. Even more critically, there is no simple way to add pseudo-primitives (user-created blocks) to Scratch 3 for use by students each time they use the software. Therefore, you need to recreate Clearscreen in every new project.

[Making your own blocks is buggy too. Make your own block. Drag that stack of blocks, topped by Define, off the screen to delete it. Press Undo (Apple-Z or CTRL-Z). The definition stack of blocks returns, but not the new block under My Blocks until another block is created.]

The default sprite orientation is 90
When you hatch a sprite in Scratch, its orientation is towards the right side of the screen with an orientation of 90. If one hopes for children to construct understanding of compass orientation based on Mod 360, orienting the sprite/turtle to 0 is more intuitive. Since the turtle is a metaphor for yourself in space, your orientation is up, or 0 when facing the computer to program it.

No wrapping
For many kids, one of the most intoxicating aspects of turtle graphics comes from commanding the turtle to go forward a large number of steps. In many ways, it’s a kid’s first experience with big numbers. Turn the turtle and go forward a million steps and get a crazy wrapping pattern on the screen. Add some pen color changes, turns, and more long lines and math turns into art turns into math.

Scratch has no wrapping due to its focus on animation and game design. There could be a way to toggle wrap/no wrap. But alas…

Units are unnecessary
Not only are they unneeded, but educationally problematic. Far too much of math education is merely vocabulary acquisition, often devoid of actual experience. I go into countless classrooms where I find a store-bought or handmade “angles” poster on the wall listing the various kinds of angles. My first question is, “Who do you think is reading that?” The kids certainly aren’t, but more importantly, “Who cares?” Kids are forced to memorize names of angles too often without any experience with angles. Turtle geometry changes all of that.

If you watch me introduce turtle geometry to children, I show them that the turtle can walk and turn. It walks in turtle steps. I never use the terms, angle or degrees, until either kids use them or much much much later. After kids have experience with angles and a growing intuition about their units of measure will I mention the words, angle or degrees. After experience, those labels hang nicely on the concepts and the terms are understood, not just parroted.

In Scratch, the turn right and turn left blocks include the label for “degrees.” This is quite unfortunate. The design of these blocks is particularly odd since they do not even use the words, right and left, but arrows instead. This is most peculiar when juxtaposed against the rest of the motion blocks which are excessively chatty with extraneous text for their inputs.

Why use symbols for right and left and not a straight arrow for move?

To make matters worse, the default degree value in Scratch is 15. Kids naturally turn in 90 degree increments. If the default were 90, as it is in Turtle Art, kids quickly realize that there are turns smaller and larger when seeking angular precision. This is a much more effective sequence for understanding angle measurement from the syntonic to the abstract.

One tacit, yet profound, benefit of teachers teaching with Logo is that they gain experience teaching mathematics without front-loading vocabulary. In too many classrooms, kids are “taught” terms, like degree or angle, absent any experience. Logo-like environments offer the potential for teachers to appreciate how students may engage in mathematics unburdened by jargon. After children enjoy meaningful experiences and “mess-about” with the turtle, it is easy to say, “that’s called an angle,” or “the units used to measure angles are called degrees.” Those terms now have a powerful idea to hang their hat on.

Starting with units is not just unnecessary, it’s pedagogically unproductive.

Asymmetrical movement
Why are there blocks for turning right and left when there is only one move block? In Logo, Forward (FD) and Back (BK) are incredibly simple for children to understand and act out by playing turtle as a formal activity or in the course of programming. Move is ambiguous. Which way should I move? Forward and back make perfect sense.

Frankly, having a default of 10 in the move block is also a drag. For decades, teachers have experienced success by asking children, “How far would you like the turtle to go?” Kids suggest values and then are surprised by them. 10 is an arbitrary number. I might prefer 0 or a random integer as the default value for move. Such a change would force children to make a decision about the distance they wish to travel.

If you want the turtle to move backward, there is no back block. You are required to turn 180 degrees or move by a negative value.

Premature use of negative numbers
Introducing negative numbers and vectors the moment one encounters the turtle is premature and likely developmentally inappropriate. There is no reason for little kids to deal with negative numbers so soon when forward (fd) and back (bk) blocks could have been in the system, or at least as primitives under the pen extensions.

Multiple forwards provides kids practice with repeated addition, leading to multiplication.

Consider this simple example:

fd 20
fd 30
fd 100

Now you want the turtle to return to the midpoint of that line segment.

You can achieve that goal three ways, not including all of the repeated addition that might be used if a kid is not ready to divide 150 by 2 or figure out that a U-turn equals 180 degrees.

bk 75
rt 180 fd 75
fd -75

It is the possibility of solving even simple problems in multiple ways that is central to the genius of learning to think mathematically with Logo and the turtle. Sadly, the Scratch use of “move” to replace forward and back makes what was once a natural simple act, complicated or impossible.

PS: One more annoyance
Why are ask and answer in the Sensing palette? They get information from a user, but do not sense anything. Either move them or rename the Sensing palette, Data. Again, why lead the witness with the arbitrary “What’s your name?” value?


*Notes:
This was largely written after a recent day teaching kids. I spent months deciding whether to share this with the world. The great Cynthia Solomon contributed to my thinking and Sylvia Martinez read a draft. Seymour Papert is in my head all of the time.

Resources

  • Scratch – web site for Scratch software
  • ScratchEd – online community and resources for teachers teaching with Scratch
  • LogoThings – Cynthia Solomon’s collection of artifacts on the history of Logo
  • A Modest Proposal – ideas for using Scratch to learn computing and reading
  • Lynx – web site for new generation of Web-based Logo
  • MicroWorlds – web site for MicroWorlds software
  • Turtle Art – web site for Turtle Art software
  • The Daily Papert – archives of Seymour Papert writing, audio, and video
  • The Logo Exchange – archives of the long-running journal for Logo-using educators
  • Logo history discussion – video interview with Cynthia Solomon and Wally Feurzig, two of Logo’s creators

Selected bibliography

  • Abelson, H., & DiSessa, A. A. (1986). Turtle geometry: The computer as a medium for exploring mathematics: MIT press.
  • Harvey, B. (1982). Why logo? . Byte, 7, 163-193.
  • Hawkins, D. (2002). The informed vision; essays on learning and human nature. NY: Algora Press.
  • Newell, B. (1988a). Turtle confusion: Logo puzzles and riddles. Canberra, Australia: Curriculum Development Centre.
  • Newell, B. (1988b). Turtles speak mathematics. Canberra, Australia: Curriculum Development Centre.
  • Papert, S. (1972). Teaching children to be mathematicians versus teaching about mathematics. International Journal of Mathematical Education in Science and Technology, 3(3), 249-262.
  • Papert, S. (1993). Mindstorms: Children, computers, and powerful ideas (2nd ed.). New York: Basic Books.
  • Papert, S. (1999). Introduction: What is logo and who needs it? In LCSI (Ed.), Logo philosophy and implementation (pp. v-xvi). Montreal, Quebec: LCSI.
  • Papert, S. (2000). What’s the big idea? Toward a pedagogical theory of idea power. IBM Systems Journal, 39(3&4), 720-729.
  • Papert, S. (2002). The turtle’s long slow trip: Macro-educological perspectives on microworlds. Journal of Educational Computing Research, 27, 7-27.
  • Papert, S. (2005). You can’t think about thinking without thinking about thinking about something. Contemporary Issues in Technology and Teacher Education, 5(3), 366-367.
  • Watt, D. (1983). Learning with logo. New York: McGraw-Hill Book Co.
  • Watt, M., & Watt, D. (1986). Teaching with logo: Building blocks for learning. NY: Addison-Wesley Publishing Company.

The Papert articles (above) are available here.


Veteran educator Dr. Gary Stager is co-author of Invent To Learn — Making, Tinkering, and Engineering in the Classroom and the founder of the Constructing Modern Knowledge summer institute. He led professional development in the world’s first 1:1 laptop schools and designed one of the oldest online graduate school programs. Learn more about Gary.


Once a decade or so, the New York Times publishes a hysterical article about “the reading wars,” in which the argument for systematic phonics instruction is advanced. They just did it again in An Old and Contested Solution to Boost Reading Scores: Phonics. The article is a predictable mess.

The phonics phanatics are hard-core. One academic used to contact my former university and demand that I be terminated whenever I questioned the phonics gospel in my magazine column. That was in addition to sending scalding letters-to-the-editor.

In 2004, the entire editorial staff of the magazine I worked for was threatened with termination for questioning Reading First. Here’s another one I wrote in 2006.

To “commemorate” the latest discovery of the “reading wars”, I humbly suggest that journalists tackle the following questions.

Q1: Anyone remember when “whole language” was banned in California? Any journalist wish to follow-up on that legacy?

Q2: Why is “balance” virtuous? Can’t it be dangerous or wrong? In my experience, educational quests for balance result in the weeds killing the flowers. In education, “balance” can be not only simplistic, but cowardly and wrong. When schools seek “balance,” the weeds always kill the flowers.

Q3: Why does the defense of systematic phonics instruction remain a top priority of the religious right?

Q4: Why are the same people so often anti-science when it comes to issues like climate change or sexual orientation and yet cling to phonics instruction as scientifically proven?

Q5: Has there been any research or journalistic investigation (or even interview) about the evolution of Lucy Calkins’ work over time? I acknowledge her contributions, but have simple profound ideas become massive curriculum products? If so, what has been lost/gained?

Q6: Where is all of this “unbalanced” whole language influence emanating from? Please name the texts or teacher preparatory programs that have gone hog wild on non-phonics-based instruction. (Not excusing the batshit crazy, sloppy, silly, reading myths SOME teachers subscribe to.)

Q7: NAME A TIME OR PLACE IN THE POST-WAR (WW II) ERA WHERE PHONICS HAS NOT COMPLETELY DOMINATED READING INSTRUCTION. Doesn’t a “reading war” require actual combatants? One side has nuclear weapons and every White House, the other has Shel Siverstein.

Q8: How can you publish an article about the reading wars without any input from the seminal experts on the losing side? Where is the expertise of scholars such as, Frank Smith, Ken Goodman, Richard Allington, Herbert Kohl? I know you now how to reach Stephen Krashen. He writes letters-to-the-editor of the New York Times regularly.

Q9: How about writing an article in which lots and lots of experts do nothing but define “phonics,” “whole language,” “literacy,” “balanced literacy,” “reading,” and “instruction?”

Q10: If everyone learns to read by being taught a sequence of 43 phonemic sounds, how do you explain children reading in Israel, China, Japan, or other countries with non-phonemic languages. How can deaf people possibly learn to read without phonics>

I respectfully implore you to investigate the effects of an unconscionable lack of access to high-interest reading material in classrooms and school libraries in places like Los Angeles and Oakland. https://www.accessbooks.net/school-library-crisis.html

In August 2018, I delivered the opening keynote address at the Constructionism Conference in Vilnius, Lithuania. When invited to speak at the conference nearly eighteen months earlier, I felt pressured to share the topic of my address quickly. Since I do some of my best work as a wiseass, I offered the title, “Making Constructionism Great Again.” Over the ensuing months, my tongue-in-cheek title began resonating and formed the basis for what I believe to be one of my favorite keynotes ever. (Sadly, I will unlikely ever give the presentation again. Therefore, I will not have the opportunity to improve upon my performance)

Despite the title I selected, I accepted the sober challenge of making an important contribution to the conference. After all, this is a community I care about, a topic I have dedicated my adult life to, in the home of my ancestors. Due to a family emergency, the speaker scheduled before me had to fly home and my talk got moved earlier in the schedule at the last minute. That meant that some of the people I hoped would hear my message, missed it. I rarely write a speech with specific audience members in mind, but I did in this case.

A bit of background

The Constructionism Conference is held every two years, almost always in Europe. The conference prior to Vilnius was in Thailand, but that was the only time the conference was outside of Europe. For close to three decades, the conference was called, EuroLogo, and was a biennial event celebrating the use of the Logo programming language in education. In 2008, the long-time organizers of the conference worried that interest in Logo was waning and that shifting the emphasis to constructionism (1) would broaden the appeal and attract more participants. It has not. Communities begin to die when they become self-conscious. There is nothing wrong with “preaching to the converted.” There are quite successful institutions that preach to the converted. Its members find strength, nourishment, and purpose in gathering.

In my humble opinion, the problem lies within the fact that the European Logo community, and this is a generalization, focused more narrowly on the fascinating mathematical or computational aspects of the Logo programming language separate and apart from its more radical use as an instrument of school reform, social justice, and epistemology. Logo’s father and inventor of “constructionism,” Dr. Seymour Papert was a noted mathematician and computer scientist who did invent the first programming language for children, but limiting the enormity of his vision to that would be like one of his favorite parables about the blind men and the elephant.

To me, the Constructionism/EuroLogo community has been focused on what is measurable and earns academic credit for those seeking job security in university systems proud of their ongoing medieval traditions. Although I have great friends who I love, respect, and adore within this somewhat dysfunctional family, I am never sure what they make of the loud American kid who works with thousands of teachers each year and doesn’t give a damn about publishing journal articles read by 3.1415927 people.

I go to the Constructionism Conference every two years because it is important to sustain the community and ideally to help it mature. If it became more popular or influential along the way, that would be a bonus. This speech was intended as a bit of unsolicited tough love, but love nonetheless. In fact, love is a big theme in this address. That is one of the most important lessons I learned from Seymour Papert and this Constructionism Conference was the first since his death.

I hope you will watch

Thankfully, I grabbed the SD card out of the video camera sitting in the theatre pointed at the stage following the talk so there is a video documenting a talk I am proud of and wish I could give many more times. The audio quality isn’t perfect and there is no camera work (except for a couple of quick edits I made). That said, if you want to understand who I am and why I do what I do, I hope you will watch this video. It was quite an emotional experience.

If you wish to listen to it while deep sea folk dancing, please WATCH from about the 46 minute mark. You need to see, hear, and feel what great teaching and learning look like.

(1) For those of you interested in learning more about constructionism, you could read our book, Invent to Learn: Making, Tinkering, and Engineering in the Classroom or Edith Ackermann’s splendid papers, her Constructionism 2010 paper, Constructivism(s): Shared roots, crossed paths, multiple legacies or Piaget’s Constructivism, Papert’s Constructionism: What’s the difference?


Veteran educator Dr. Gary Stager is co-author of Invent To Learn — Making, Tinkering, and Engineering in the Classroom and the founder of the Constructing Modern Knowledge summer institute. He led professional development in the world’s first 1:1 laptop schools and designed one of the oldest online graduate school programs. Learn more about Gary here.

Stop the Insanity
Simple strategies to address the growing epidemic of at-risk learners.
October 2007 issue of District Administration Magazine

When politicians shout and headlines highlight underperforming schools and children left behind, they are referring to the growing number of students labeled “at-risk.” The phenomena leading to this designation include poverty, behavioral disorders and the rapidly growing epidemic of learning disabilities. “Atrisk” has really come to mean, “Not good at school.” Consider the possibility that if a student is not good at school, then that school is not good for the student. Perhaps the school is at-risk.

From 1999 through 2001 I worked with MIT colleagues Seymour Papert and David Cavallo on the creation of a high-tech, multiage, project-based, alternative learning environment for incarcerated teens within the troubled Maine Youth Center. Students in a person often represent the hat trick of being at-risk-poverty, social problems and learning disabilities.

My Ph.D. dissertation documents the remarkable work of dozens of these students and shares details of constructionist learning theory, which was supported and validated by the learning environment we created. Subsequent work with large populations of at-risk students in the United States, Canada and Australia leads me to share the following, some might say radical, proposals for serving at-risk learners.

Some define insanity as doing the same thing and expecting a different result. If a student is underperforming or not learning, subjecting him or her to more of the same, perhaps louder or for longer periods of time, will not achieve a different result. This is a punitive approach to teaching that increases student alienation.

The state of Maine freed us from all curricular and assessment requirements. This made it possible for us to focus on each learner. At the very least, every school can try fresh approaches to see if new interventions reduce the severity of the at-risk population.

Treat all new students as welcome guests in your classroom. Leave their umulative folders in the file cabinet so you may get to know them without prejudice. Do not allow colleagues and past teachers to poison your relationship with students before you even get to know them.

One student, Michael, was absolutely brilliant at engineering. He could assemble, test and improve a dozen robotic machines in the time it takes most people to get started. He could converse at length with MIT professors about engineering principles. Yet everything in Michael’s permanent record indicated that he was illiterate. We had clues that this was a misdiagnosis,since Michael programmed computers and garnered information from books around the classroom but never made a big deal about it. Instead we focused on Michael and his current work. We provided assistance when asked and when we observed a teachable moment. A spirit of collegiality and trust was formed between us. Such a bond is critical in any productive context for learning but is often lacking in the lives of at-risk learners.

A few weeks before Michael was going to be released from the facility on his 18th birthday, he quietly sat at his computer for long stretches of time busily working on something important to him. Upon completion of this project, Michael presented us with a 12,000-word autobiography.

My colleague feigned amazement and said, “We were told you were illiterate.” Michael replied, “Oh, I could always read and write, but I wasn’t a very strong reader and I didn’t like reading about puppies.” Then his voice trailed off and he said, “I liked reading about NASA,” as if to suggest that nobody cared about what he liked to read and tossed him in the illiterate bin. Michael and so many other at-risk learners suff er from what Herbert Koh calls “creative maladjustment.” We found that students proud of their work maintained secret portfolios, even if they refused to produce such documentation for us.

Here are a few additional suggestions for better educating at-risk students.

1. Move the goalposts

It may be unrealistic to believe a student years below grade-level will catch up in a few months, regardless of a teacher’s brilliance. The goal needs to be what football coaches call forward progress. We need to take individual students from where they are and move them forward.

2. Be honest

Prioritize and have honest objectives. If a child is disruptive, teaching him or her Algebra 2 may be unrealistic since your real goal is for the student to behave. Institutions give grades for academic subjects, while society just worries about the student being a behavioral problem.

3. Imagine the impossible

If student discipline or behavior is your primary concern, think about the places where such problems do not exist and study them. Reflect on why such activities as summer camp, organized sports or afterschool jobs don’t suffer from the same pathologies, and identify variables you may integrate in the classroom.

4. Remember that less is more

We may need to do a lot more of what we know about effective primary school teaching. Integrated studies, thematic teaching, a centers approach or storytelling as teaching offer models of engaging students without overwhelming them with different rituals and teachers and giving them insufficient time for doing quality work.

5. Stop the name calling

This one is a biggie and extends beyond blaming students for their predicament. Make a concerted effort to refrain from labeling students at-risk, under-performing, etc. Their status is not a surprise to them, and labeling them only harms their self-esteem. Other labels, often considered positive, such as “multiple intelligences learning style” also have a deleterious effect by placing students in a new set of boxes.

6. Eliminate academic competition

While competition may be human nature, it’s highly destructive in the learning environment. It is only possible for students to make steady personal progress if one may comfortably read Dr. Seuss while a classmate tackles James Michener. Th e typical high school classroom sanctions ridicule and rewards degree of difficulty. This is counterproductive for at-risk learners.

7. Create authentic experiences

Disengaged students need to work on long-term meaningful work they can take pride in. Whether you embrace projectbased learning or something akin to the apprenticeship model used successfully by the Big Picture schools, students, especially those at-risk, need to be engaged in authentic experiences.

Students love teachers brave enough to maintain humane relationships with them.

8. Offer greater curricular diversity

The biggest mistake made in an effort to increase test scores is doubling up on reading and mathematics at the expense of the other subjects, especially electives. At-risk students may already dislike school. Depriving them of opportunities to learn something they like by killing-off electives, social studies, science and the arts is a recipe for disastrous dropout rates.

9. Have material rich classrooms

Learn from great kindergarten classes and make classrooms material rich. Not only should there be abundant constructive and computational technology and art supplies, but every classroom needs a wellstocked classroom library of fiction and nonfiction books at every reading level.

Allowing one of our 18-year-old students to “read” a book on tape led him to say, “This is the first time I ever saw pictures when I read.” Access to such materials may quickly lead to literate behaviors. Ubiquitous access to computers may offer a opportunity for at-risk students to demonstrate expertise in a domain not dominated by teachers.

10. Let go of the checklists

Great teachers know that once interest is generated in a story or topic, connections may be made to any other subject. Your scope and sequence is less important than children learning.

11. Talk with the students

While this sounds obvious, I meet highschool-age students regularly who have never had a conversation with an adult. Sure, adults have talked at them or yelled at them or told them what to do, but an alarming number of students have never engaged in an actual intergenerational conversation among equally interested parties. Without reversing this trend, students will never be able to be productive citizens. Students love teachers brave enough to maintain humane relationships with them.

12. The “worst” students need your “best” teachers

We all know the tendency to assign the best students the finest teachers. While we may quibble over a defi nition of “best,” the most flexible, creative, compassionate teachers need to work with your least successful students.

13. Keep the students engaged

The one rule in our Maine classroom was that every student needed to be doing something. Children understand this, and it’s good, simple advice for educators of atrisk students as well. If one strategy isn’t working, do something else.

14. Don’t put students at risk in the first place

Can you imagine how much effort and suffering Michael invested in being illiterate? Wouldn’t asking what he liked to read when he was seven have saved a great deal of hardship? It may take decades to overcome today’s earlier and tougher calls for accountability, which result in the conditions that breed at-risk students.

Gary S. Stager, gary@stager.org, is senior editor of DISTRICT ADMINISTRATION and editor of The Pulse: Education’s Place for Debate

(www. districtadministration.com/pulse).

Following speaking at the prestigious WISE Conference in Qatar (November 2017), Gary Stager delivered a keynote address on learning-by making at a conference held at The American University in Cairo. The video is finally available. Enjoy!


Veteran educator Dr. Gary Stager is co-author of Invent To Learn — Making, Tinkering, and Engineering in the Classroom and the founder of the Constructing Modern Knowledge summer institute. He led professional development in the world’s first 1:1 laptop schools and designed one of the oldest online graduate school programs. Learn more about Gary here.

In May 2018, Gary Stager sat down with Change.School founders, Bruce Dixon and Will Richardson for their Modern Learners Podcast, to discuss learning, teaching, school improvement, and a host of other provocative topics. The title of the podcast is “The Lost Art of Teaching with Gary Stager.”

You may listen to the conversation or download the audio podcast here or watch the Zoom video below.

I once heard former President Clinton say, “every problem in education has been solved somewhere.” Educators stand on the shoulders of giants and should be fluent in the literature of their chosen field.  We should be reading all of the time, but summer is definitely an opportunity to “catch-up.”

Regrettably too many “summer reading lists for educators” are better suited for those concerned with get-rich quick schemes than enriching the lives of children. Case-in-point, the President of the National Association of Independent Schools published “What to Read this Summer,” a list containing not a single book about teaching, learning, or even educational leadership. Over the past few years, I offered a canon for those interested in educational leadership.

When I suggested that everyone employed at my most recent school read at least one book over the summer, the principal suggested I provide options. Therefore, I chose a selection of books that would appeal to teachers of different grade levels and interests, but support and inspire the school’s desire to be more progressive, creative, child-centered, authentic, and project-based.

In the Spirit of the Studio: Learning from the Atelier of Reggio Emilia, Second Edition.
Aimed at early childhood education, but equally applicable at any grade level.  Illustrates how to honor the “hundred languages of children.”

Loving Learning: How Progressive Education Can Save America’s Schools
A spectacular case made for progressive education in the face of the nonsense masquerading as school “reform” these days.
 The Big Picture: Education is Everyone’s Business.
Aimed at secondary education, but with powerful ideas applicable at any level. Students spend 40% each week in authentic internship settings and the remaining school time is focused on developing skills for the internship. This may be the best book written about high school reform in decades. 
 The Children’s Machine: Rethinking School in the Age of the Computer.
A seminal book that situates the maker movement and coding in a long progressive tradition. This is arguably the most important education book of the past quarter century.  Papert worked with Piaget, co-invented Logo, and is the major force behind educational computing, robotics, and the Maker Movement.
Making Learning Whole: How Seven Principles of Teaching Can Transform Education.
A clear and concise book on how to teach in a learner-centered fashion by a leader at Harvard’s Project Zero. Should be essential reading for all educators!
Changing Lives: Gustavo Dudamel, El Sistema, and the Transformative Power of Music.
“One of the finest books about teaching and learning I’ve read in the past decade.” (Gary Stager) Tells the story of how hundreds of thousands of students in Venezuela are taught to play classical music at a high level. LA Philharmonic Conductor Gustavo Dudamel is a graduate of “El Sistema.” The lessons in this book are applicable across all subject areas. 

One additional recommendation…


Neil Gershenfeld, Alan Gershenfeld, Joel Cutcher-Gershenfeld (2017). Designing Reality: How to Survive and Thrive in the Third Digital Revolution.

In his groundbreaking books, When Things Start to Think and Fab, MIT Professor Neil Gershenfeld predicted the past quarter century of technological innovation and defined the basis for the modern maker movement. In this new volume, Gershenfeld collaborated with his social scientist and game designer brothers to help us all imagine the next fifty years of technological innovation and how it will change our world. 


Learn by making this summer; alone, with colleagues, or with your own children!

Check out the CMK Press collection of books on learning-by-making by educators for educators!

With all of the problems in the world, I know what you’ve been thinking. “I sure wish there was a new Gary Stager TED Talk to watch.” Well, your prayers to Judge Roy Moore have been answered.

Last Spring, I was headed to Germany to be in-residence at a school where my great friend, colleague, and former student, Amy Dugré, is part of the leadership team. A few weeks before my residency, I received a lovely email from tenth grade students at the International School of Dusseldorf. The letter acknowledged my forthcoming work at the school and kindly invited me to participate in a TEDx event they were organizing. The theme of the TEDx event was identity under the banner of “Who Am I?”

I told the kids that I despise all things TED and especially loathe delivering TED talks(1), but if they wanted me to participate, I would be happy to stand on the red dot and pretend to be an aspiring viral video star. Given the maturity expressed in the invitation, I hoped that my candor would lead the kids to consider reasons why some might not share their enthusiasm for TED.

In the end, the tenth graders’ charm won me over and I accepted their kind invitation.  When asked for the topic of my performance, my inner smartass kicked into gear and I came up with the title, “Care Less.”

In an attempt to further mock the pomposity of TED, I supplied the following abstract.

Any success I may have experienced is attributable to overcoming obstacles needlessly set by others and learning early on that many of the things other care deeply about, simply do not matter at all. This awesome TED talk will explore my epic quest to triumph in a world of needless prerequisites, arbitrary hierarchies, and hegemonic pathways. Caring less about the sort of compliance and schooling traditions imposed on young people may lead them to focus on finding things that bring them joy, beauty, purpose, and authentic achievement.

It is often the case that the germ of my best ideas are borne of wisecracks and this topic was no exception. Spending time in highly competitive private schools where folks too readily accept bourgeois notions of what educational preparation for the “real world” truly means leaves me convinced that I chose the right topic.

The very nature of this terrific student organized event required the TED Talks to be self-indulgent. That makes sharing my talk slightly uncomfortable. I took seriously the opportunity to speak directly to high school students who I hoped would benefit from an adult offering a different narrative from so many of their teachers and parents. I only wish I had the opportunity to give the talk more than once, but that’s the problem with TED Talks. TED is a TV show without any of the benefits of a television studio or taking the show on the road.

I wrote the talk an hour before showtime and delivered it with no monitor or timer in front of me. I’m sure that the performance suffers, but that the message may manage to be worthwhile nonetheless. I hope you or some teenagers find it interesting.

In the final analysis, I’m enormously proud of what I said. I just can’t bear to watch a second of it.


(1) Remarkably, I have now delivered four completely different TED Talks. I spent months before my first TEDx Talk (Reform™) obsessing over the high-stakes chance to go viral and become famous beyond my wildest dreams. The experience made me ill. I then decided I needed to confront my fears and asked to try it again a year later. That time, I spent virtually no time preparing and convinced myself that I didn’t give a damn (We Know What To Do). The audio at the venue was problematic, but the TED experience was less soul crushing. Just when I thought TED Talks were behind me, I was invited to give a third TEDx talk at the American School of Bombay. I have worked at the school since 2004 and felt obligated to oblige. By then, I had abandoned any hope of being a YouTube sensation or being knighted by the Queen and decided to share the legacy of my friend, mentor, and hero, Seymour Papert. People seem to appreciate that talk, Seymour Papert – Inventor of Everything*.