Checking-in on teachers working on a robotics project during an Invent To Learn workshop

A reporter for an Australian education magazine recently sent
interview questions about robotics in education, including the obligatory question about AI. The final article, when it runs, only grabs a few of my statements mixed in amongst the thoughts of others. So, here is the interview in its entirety. Of late, I have decided to answer all reporter questions as if they are earnest and thoughtful. Enjoy!

Q: With the current focus on STEM, and the increasing need to engage students in hands-on STEM learning, what sort of potential exists for the teaching of robotics in the classroom?

GS: Piaget teaches us that “knowledge is a consequence of experience.” If we believe that learning by doing is powerful, learning-by-making concretizes and situates powerful ideas. Robotics is one such medium for learning-by-making in a fashion that combines the actual use of concepts traditionally taught superficially or not at all.

In a learner-centered context, robotics adds colors to the crayon box. If in the recent past, seven year-olds made dinosaurs out of cereal boxes, now their cereal box dinosaurs can sing, dance, or send a text message to their grandmother, as long as state law still allows dinosaurs to use cellphones in schools.

Reggio Children’s Carla Rinaldi working with Aussie educators Prue & Stephanie at Constructing Modern Knowledge

Q: How important has robotics become in preparing students for the jobs of the future?

GS: Less than learning to play the cello, love theatre, or understand the importance of Thelonious Monk, the labor movement, or women’s history in a contemporary democracy.

A scene from one of my family workshops (click to zoom)

Q: Do you think skills such as coding and programming will become just as important as learning Math and English in coming years?

GS: Such questions reveal how powerful ideas are often reduced to fads and buzzwords in a zero-sum notion of schooling. While it surely the case that any new idea introduced in schools runs the risk of stealing time and attention from something else, robotics is an interdisciplinary medium for expression, like drawing, painting, writing, composing

If our goals were as modest as to increase understanding of the decontextualized and often irrelevant nonsense found in the existing Math curriculum, kids would learn to program and engage in physical computing projects. The only context for using and therefore understanding many Math concepts is in computing activities. Absolute value on paper is a useless piece of vocabulary. If you are trying to design a robot to navigate an unfamiliar terrain or get your rocket ship to land on a planet in the video game you programmed, a working understanding of absolute value comes in quite handy.

For much of my generation, DNA is three letters representing three words I can neither remember or pronounce, plus that squiggly thing I don’t understand. Advances in technology now make it possible for year seven kids to manipulate DNA. I bet those kids will have a different relationship with genetics than previous generations.

Q: What sort of an impact does teaching the fundamentals of robotics have when it comes to possible career pathways for students?

GS: I don’t know and I do not trust anyone who claims to know the future of employment. Schools make a terrible mistake when they see their purpose as vocational in nature. The sorting of kids into winners and losers with career pathways determined by some artificial school assessment should be relegated to the dustbin of history. How well did the Hawke Government do at predicting the impact of social media? Schools should prepare children to solve problems that none of their teachers ever anticipated. Schools should do everything possible to create the conditions in which children can become good at something, while gaining a sense of what greatness in that domain might look like. The “something” is irrelevant. Currently, academic success has little to do with the development of expertise.

I have three adult university educated children. The only one to live on her own, with employment, and health insurance since the minute she graduated, was the art major. She enjoyed a fabulous well-rounded liberal arts education.

Q: Do you think schools are typically placing enough of an emphasis on robotics, coding, programming and artificial intelligence? Or do we still have a long way to go in embracing this technology in schools, particularly in Australia?

GS: In a wealthy nation like Australia (or the United States), every child should have their own personal multimedia laptop computer (30 years after Australia pioneered 1:1 computing) and they should learn to program that computer and control external devices not because it might lead to a job someday, but because programming and physical computing (a term preferable to robotics) are ways of gaining agency over an increasingly complex and technologically sophisticated world.

Programming and robotics answer the question Seymour Papert began asking more than fifty years ago, “Does the computer program the child, or the child program the computer.” In an age of rising authoritarianism and “fake news,” learner agency is of paramount importance.

The first schools in the world where every kid owned a personal portable computer, used them for programming and robotics was in Australia!

Coding and programming are the same thing. As a proponent of high-quality educational experiences, I recommend programming and robotics as incubators of powerful ideas. AI largely remains science fiction. Its contemporary uses in education are dystopian in nature and should be rejected.

A scene from one of my family workshops

Q: When it comes to the teaching of STEM in schools, and particularly robotics, how well do you think Australia is placed compared to other countries? And, are our schools doing enough to prepare students for future jobs?

GS: International education comparisons are immoral and needlessly based on scarcity. In order for Australian students to succeed, it is unnecessary for children in New Zealand to fail. Competition in education always has deleterious effects.

A scene from one of my family workshops

Q: Do you think enough is being done in educating our future teachers about the importance of STEM and robotics during their tertiary education?

GS: No. The art of teaching and everything but curriculum delivery and animal control has been sadly removed from teacher preparation. Teachers taught in a progressive tradition see robotics as mere stuff and use it with ease and without specialised instruction.

Q: What are some of the steps schools can take to upskill their teachers in robotics? And how important is it to ensure teachers are appropriately skilled in teaching robotics?

GS:

  • Stop viewing robotics narrowly through the lens of robotics competitions where one rich school builds a truck to kill another rich school’s truck. Competition also has a prophylactic impact on the participation of girls.
  • Expand your notion of robotics more broadly as physical computing and see the whimsical, playful, beautiful projects shared in our book, Invent To Learn,this library of project videos (http://cmkfutures.com/competent-teachers/), the Birdbrain technologies video library (https://www.youtube.com/channel/UCxjgGxBG2QhymwC2FHpt3zw), and the work being done with the micro:bit around the world
  • Most importantly, schools need to embrace project-based learning, not as the pudding you get after suffering through a semester of instruction, but as the primary educational diet. Once that occurs, the power of robotics/physical computing as a vehicle for personal expression becomes self evident.

A scene from one of my family workshops (click to zoom)

Q: What are some of the ways teachers can incorporate robotics into the Australian Digital Technologies Curriculum?

GS: By doing something. There are remarkable new materials available like the Hummingbird Bit Robotics Kits, (https://inventtolearn.com/bit/) but schools have now had access to kid-friendly robotics kits from LEGO since 1987.

I also recommend placing teachers and parents in meaningful hands-on experiences such as my family workshops described at http://stager.tv/blog/?p=4452, or the Constructing Modern Knowledge institute.

A scene from one of my family workshops (click to zoom)

Q: In coming years, how much of an emphasis do you think will be placed on robotics education in schools?

GS: Fads fizzle. One’s ability to control computational devices will only increase in importance.

Q: Is there anything else you’d like to comment on?

GS: The voluptuous Australian national curriculum in design and technology should be replaced by Seymour Papert and Cynthia Solomon’s pithy 1971 paper, “Twenty Things to Do with a Computer.”


Gary S. Stager, Ph.D.is an award-winning teacher educator, speaker, consultant and author who is an expert at helping educators prepare students for an uncertain future by super charging learner-centered traditions with modern materials and technology. He is considered one of the world’s leading authorities on learning-by-doing, robotics, computer programming and the maker movement in classrooms. Dr. Gary Stager is co-author of Invent To Learn — Making, Tinkering, and Engineering in the Classroom and the founder of the Constructing Modern Knowledge summer institute. He led professional development in the world’s first 1:1 laptop schools and designed one of the first online graduate school programs. Learn more about Gary here.

Two-Day Seminars with Will Richardson in October 2019 in DC, NJ, & Boston – Register today!

In Chapter Four of our new book, Invent to Learn – Making, Tinkering, and Engineering in the Classroom, we discuss the importance of prompt setting as a basis for project-based learning. I argue that “a good prompt is worth 1,000 words.” Projects are not the occasional dessert you get as a reward after consuming a semester’s worth of asparagus, but that the project should be a teacher’s “smallest unit of concern.

Last week, Sylvia Martinez and I completed a successful four-city Texas Invent to Learn workshop tour. Each workshop featured an open-ended engineering challenge. This challenge, completed in under two hours, was designed not only to introduce making, engineering, tinkering, and programming to educators with diverse experience, but to model non-coercive, constructionist, project-based learning.

Presented with what we hope was a good prompt, great materials, “sufficient” time, and a supportive culture, including a range of expertise, the assembled educators would be able to invent and learn in ways that exceeded their expectations. (We used two of our favorite materials: the Hummingbird Bit Robotics Kit and Snap! programming language.)

A good time was had by all. Workshop participants created wondrous and whimsical inventions satisfying their interpretation of our prompt. In each workshop a great deal was accomplished and learned without any formal instruction or laborious design process.

What’s your point?
Earlier today, our friends at Birdbrain Technologies, manufacturers of the Hummingbird Bit Robotics Kit, tweeted one of the project videos from our Austin workshop. (Workshop participants often proudly share their creations on social media, not unlike kids. Such sharing causes me to invent new workshop prompts on a regular basis so that they remain a surprise in subsequent events.)

This lovely video was shared for all of the right reasons. It was viewed lots of times (and counting). Many educators liked or retweeted it, All good!

What’s slightly more problematic is the statement of the prompt inspiring this creation.

“Problem: The Easter Bunny is sick. Design a robot to deliver eggs.”

That was not the exact prompt presented to our workshop participants. This slight difference makes all the difference in the world.

The slide used to launch the invention process

Aren’t you just nitpicking?
Why quarrel over such subtle differences in wording?

  • Words matter
  • My prompt was an invitation to embark on a playful learning adventure complete with various sizes of candy eggs and a seasonal theme. Posing the activity as a problem/solution raises the stakes needlessly and implies assessment.
  • Design a robot comes with all sorts of baggage and limits the possible range of approaches. (I just rejected the word, solutions, and chose approaches because words matter.)

People have preconceived notions of robots (good and bad). Even if we are using a material called a robotics kit, I never want children to cloud their thinking with conventional images of robots.

The verb, design, is also problematic. It implies a front-loaded process involving formal planning, audience, pain point, etc… good in some problem solving contexts, but far from universally beneficial.

The use of problem, design, and robot needlessly narrows and constrains the affective, creative, and intellectual potential of the experience.

A major objective of professional learning activities such as these is for educators to experience what learning-by-doing may accomplish. Diving in, engaging in conversation with the materials, collaborating with others, and profiting from generative design (a topic for future writing) leads all learners to experience success, even in the short time allotted for this activity. Such a process respects what Papert and Turkle called epistemological pluralism. Hopefully, such positive personal experiences inspire future exploration, tinkering, and learning long after the workshop ends.

Our book suggests that good prompts are comprised of three factors:

  • Brevity
  • Ambiguity
  • Immunity to assessment

Such prompt-setting skill develops over time and with practice. Whether teaching preschoolers or adults, I am sensitive to planting the smallest seed possible to generate the most beautiful garden with the healthiest flowers. That glorious garden is free of litter from brainstorming Post-It Notes, imagination crushing rubrics, and other trappings of instruction.

References
Martinez, S. L., & Stager, G. (2019). Invent to learn: Making, Tinkering, and Engineering in the Classroom, second edition (2 ed.): Torrance, CA: Constructing Modern Knowledge Press

Turkle, S., & Papert, S. (1992). Epistemological Pluralism and the Revaluation of the Concrete. Journal of Mathematical Behavior, 11(1), 3-33.


Veteran educator Dr. Gary Stager is co-author of Invent To Learn — Making, Tinkering, and Engineering in the Classroom and the founder of the Constructing Modern Knowledge summer institute. He led professional development in the world’s first 1:1 laptop schools and designed one of the oldest online graduate school programs. Learn more about Gary here.

”cmk09″

Buy the book!

Following speaking at the prestigious WISE Conference in Qatar (November 2017), Gary Stager delivered a keynote address on learning-by making at a conference held at The American University in Cairo. The video is finally available. Enjoy!


Veteran educator Dr. Gary Stager is co-author of Invent To Learn — Making, Tinkering, and Engineering in the Classroom and the founder of the Constructing Modern Knowledge summer institute. He led professional development in the world’s first 1:1 laptop schools and designed one of the oldest online graduate school programs. Learn more about Gary here.

Hello World is a free, glossy, well-edited magazine for educators published by the Raspberry Pi Foundation. Gary Stager has written two featured articles in the first four issues of the publication.

His latest article, Professional Development Gets Personal, shares lessons learned over a decade of Constructing Modern Knowledge.

Download the complete issue

 

Read Gary’s PD Article

 

Download Issue 1 of Hello World

Read Gary Stager’s profile of Seymour Papert

 

 

 

 

 

 


Veteran educator Dr. Gary Stager is co-author of Invent To Learn — Making, Tinkering, and Engineering in the Classroom and the founder of the Constructing Modern Knowledge summer institute. Learn more about Gary here.

iste-charter

Dear Dr. Williams:

Thank you so much for being the first ISTE executive or board member to address the sad state of affairs expressed by my old friend and mentor David Thornburg. It is disappointing that David’s proposal was rejected. Dr. Thornburg is a pillar of educational computing.

I am grateful to David for bringing attention to ISTE’s non-existent response to the life and death of Seymour Papert. It is worth noting that the father of our field, Dr. Papert, was never invited to keynote ISTE or NECC; not after the publication of his three seminal books, not after the invention of robotics construction kits for children, not after 1:1 computing was borne in his image in Australia, not after Maine provided laptops statewide, not when One Laptop Per Child changed the world. This lack of grace implies a rejection of the ideas Papert advocated and the educators who had to fight even harder to bring them to life against the tacit hostility of our premiere membership organization.

One would imagine that a conference dedicated to linoleum installation would eventually have the inventor of linoleum to address its annual gathering. Last year (2015), ISTE rejected my proposal to lead a session commemorating the 35th anniversary of Papert’s book Mindstorms and the 45th anniversary of the paper he co-authored with Cynthia Solomon, “Twenty Things To Do with a Computer.” See the blog post I wrote at the time.

Such indifference was maddening, but the failure of the ISTE leadership to recognize the death of Dr. Papert this past July, even with a tweet, is frankly disgraceful. After Papert’s death, I was interviewed by NPR, the New York Times and countless other news outlets around the world. I was commissioned to write Papert’s official obituary for the prestigious international science journal Nature. Remarkably, unless I missed it, ISTE has failed to honor Dr. Papert in any way, shape, or form. I have begged your organization to do so in order to bring his powerful ideas to life for a new generation of educators. These actions should not be viewed as a grievance or form of attention seeking. ISTE’s respect for history and desire to provide a forum for the free exchange of disparate ideas are critical to its relevance and survival.

Dr. Papert himself might suggest that ISTE is idea averse. In its quest to feature new wares and checklists, it neglects to remind our community that we stand on the shoulders of giants. Earlier this year, I was successful in convincing NCWIT to honor Papert’s colleague, Dr. Cynthia Solomon, with its Pioneer Award. If only I could be so persuasive as to convince ISTE to honor the “mother of educational computing” before it’s too late. As we assert in our book, Invent To Learn, without Papert and Solomon there is no 1:1 computing, no Code.org, no CS4All, no school robotics, no maker movement.

In light of Papert’s recent passing, and the remarkable 50th anniversary of the Logo programming language in 2017, I submitted two relevant proposals for inclusion on the 2017 ISTE Conference Program.

You guessed it. Both were rejected.

Anniversaries and deaths are critical milestones. They cause us to, pause, reflect, and take stock. In 2017, there are several major conferences, including one I am organizing, focused on commemorating Papert and the 50th birthday of Logo. Sadly, ISTE seems to be standing on the sidelines.

It is not that I have nothing to offer on these subjects or do not know how to 1) write conference proposals or 2) fill an auditorium. As someone who has worked to bring Papert’s powerful ideas to life in classrooms around the world for 35 years and who worked with Papert for more than two decades, I have standing. I edited ISTE’s journal dedicated to the work he began, was the principal investigator on Papert’s last major institutional project, gave a TEDx talk in India on his contributions, and am the curator of the Seymour Papert archives at dailypapert.com. I worked in classrooms alongside Seymour Papert. Last year, 30 accepted ISTE presentations cited my work in their bibliographies.

logo-exchange-its-alive-cover

I am often asked why I don’t just give up on ISTE. The answer is because educational computing is my life’s work. I signed the ISTE charter and have spoken at 30 NECC/ISTE Conferences. It is quite possible that no one has presented more sessions than I. For several years, I was editor of ISTE’s Logo Exchange journal and founded ISTE’s SIGLogo before it was killed by the organization. I have been a critical friend for 25 years, not to harm ISTE, but to help it live up to its potential.

For decades, David Thornburg and I have spoken at ISTE/NECC at our own expense. This is just one way in which I know that we are both committed to what ISTE can and should be. I have also written for ISTE’s Learning and Leading with Technology.

It would be my pleasure to discuss constructive ways to move forward.

Happy holidays,

Gary

Gary S. Stager, Ph.D.
CEO: Constructing Modern Knowledge
Co-author: Invent To Learn – Making, Tinkering, and Engineering in the Classroom

PS: Might I humbly suggest that ISTE hire or appoint a historian?

Dr. Gary Stager recently authored Intel’s Guide to Creating and Inventing with Technology in the Classroom. The piece explores the maker movement for educators, policy-makers, and school leaders.

Download a copy here.

Intel cover

PBL 360 Overview – Professional Development for Modern Educators

Gary S. Stager, Ph.D. and his team of expert educators travel the world to create immersive, high-quality professional development experiences for schools interested in effective 21st century project-based learning (PBL) and learning by doing. Whether your school (or school system) is new to PBL, the tools and technologies of the global Maker Movement, or looking to sustain existing programs, we can design flexible professional learning opportunities to meet your needs, PK-12.

Our work is based on extensive practice assisting educators on six continents, in a wide variety of grade levels, subject areas and settings. Dr. Stager has particular experience working with extremely gifted and severely at-risk learners, plus expertise in S.T.E.M. and the arts. The Victorian State of Victoria recently offered a highly successful three-day PBL 360 workshop for members of their “New Pedagogies Project.”

PBL 360 captures the spirit of the annual Constructing Modern Knowledge summer institute in a local setting.

Options

Professional growth is ongoing, therefore professional development workshops need to be viewed as part of a continuum, not an inoculation. The PBL professional development workshops described below not only reflect educator’s specific needs, but are available in one, two or three-day events, supplemented by keynotes or community meetings, and may be followed-up with ongoing mentoring, consulting or online learning. Three days is recommended for greatest effect and capacity building.

While learning is interdisciplinary and not limited to age, we can tailor PD activities to emphasize specific subjects or grade levels.

These experiences embrace an expanding focus from learner, teacher, to transformational leader with a micro to systemic perspective. Video-based case studies, hands-on activities and brainstorming are all part of these highly interactive workshops.

Guiding principles

  • Effective professional development must be situated as close to the teacher’s actual practice as possible
  • You cannot teach in a manner never experienced as a learner
  • Access to expertise is critical in any learning environment
  • Practice is inseparable from theory
  • We stand on the shoulders of giants and learn from the wisdom of those who ventured before us
  • Modern knowledge construction requires computing
  • Learning and the learner should be the focus of any education initiative
  • Children are competent
  • School transformation is impossible if you only change one variable
  • Things need not be as they seem

PBL 360

Effective project-based learning requires more than the occasional classroom project, no matter how engaging such occasional activities might be. PBL 360 helps educators understand the powerful ideas behind project-based learning so they can implement PBL and transform the learning environment using digital technology and modern learning theory. PBL 360 helps teachers build a powerful, personal set of lenses and an ability to see “360 degrees” – meaning in every direction – with which to build new classroom practices.

Teachers, administrators and even parents should consider participation.

Reinventing ourselves

Piaget teaches us that knowledge is a consequence of experience. Therefore, any understanding of project-based learning or ability to implement it effectively must be grounded in personal experience. It is for this reason that all professional development pathways begin with an Invent to Learn workshop. Subsequent workshop days will build upon personal reflections and lessons learned from the Invent to Learn experience. Flexibility and sensitivity to the specific needs of participants is paramount.

Day One – Learning Learning

Join colleagues for a day of hard fun and problem solving — where computing meets tinkering and design. The workshop begins with the case for project-based learning, making, tinkering, and engineering. Next, we will discuss strategies for effective prompt-setting. You will view examples of children engaged in complex problem solving with new game-changing technologies and identify lessons for your own classroom practice. Powerful ideas from the Reggio Emilia Approach, breakthroughs in science education, and the global maker movement combine to create rich learning experiences.

“In the future, science assessments will not assess students’ understanding of core ideas separately from their abilities to use the practices of science and engineering. They will be assessed together, showing that students not only “know” science concepts; but also that they can use their understanding to investigate the natural world through the practices of science inquiry, or solve meaningful problems through the practices of engineering design.” Next Generation Science Standards (2013)

Participants will have the chance to tinker with a range of exciting new low- and high-tech construction materials that can really amplify the potential of your students. The day culminates in the planning of a classroom project based on the TMI (Think-Make-Improve) design model.

Fabrication with cardboard and found materials, squishy electronic circuits, wearable computing, Arduino, robotics, conductive paint, and computer programming are all on the menu.

This workshop is suitable for all grades and subject areas.

Day Two – Teaching

Day two begins with a period of reflection about the Invent to Learn workshop the day before, focusing on teaching and project-based learning topics, including:

  • Reflecting on the Invent to Learn workshop experience
  • Compare and contrast with your own learning experience
  • Compare and contrast with your current teaching practice

Project-based learning

  • What is a project?
  • Essential elements of effective PBL

Thematic curricula

  • Making connections
  • Meeting standards

Design technology and children’s engineering

  • The case for tinkering
  • Epistemological pluralism
  • Learning styles
  • Hands-on, minds-on
  • Iterative design methodology

Teacher roles in a modern classroom

  • Teacher as researcher
  • Identifying the big ideas of your subject area or grade level
  • Preparing learners for the “real world”
  • What does real world learning look like?
  • Lessons from the “Best Educational Ideas in the World”
  • What we can learn from Reggio Emilia, El Sistema and the “Maker” community?
  • Less Us, More Them
  • Shifting agency to learners
  • Creating independent learners

Classroom design to support PBL and hands-on learning

  • Physical environment
  • Centers, Makerspaces, and FabLabs
  • Scheduling

Tools, technology, materials

  • Computers as material
  • Digital technology
  • Programming
  • Choices and options

PBL 360 models teaching practices that put teachers at the center of their own learning, just like we want for students. This in turn empowers teachers to continue to work through the logistics of changing classroom practice as they develop ongoing fluency in tools, technologies, and pedagogy. Teachers who learn what modern learning “feels” like are better able to translate this into everyday practice, supported by ongoing professional development and sound policy.

Day Three – Transformation

The third day focuses on the details and specifics of implementing and sustaining PBL in individual classrooms and collaboratively with colleagues. Participants will lead with:

Program Planning

  • Curricular audit
  • Standards, grade levels
  • Assessment

Classroom Planning

  • Planning PBL for your classroom
  • Curricular projects vs. student-based inquiry
  • Creating effective project prompts

Identifying Change

  • The changing role of the teacher
  • Shaping the PBL-supportive learning environment
  • Does your school day support PBL?
  • Action plan formulation

Advocacy

  • Communicating a unifying vision with parents and the community
  • Adjusting expectations for students, parents, community, administrators, and colleagues
  • Creating alliances
  • Identifying resources

Modern learning embraces a vision of students becoming part of a solution-oriented future where their talents, skills, and passions are rewarded. The changes in curriculum must therefore be matched with a change in pedagogy that supports these overarching goals. Teachers need to understand design thinking, for example, not just as a checklist, but as a new way to shape the learning environment. It is no longer acceptable to simply teach students to use digital tools that make work flow more efficient, nor will it be possible to segregate “making” and “doing” into vocational, non-college preparatory classes.

PBL 360 will help teachers create learning environments that meet these goals with professional development that is innovative, supportive, and sustainable.

Constructive Technology Workshop Materials

Although constructive technology evolves continuously, the following is the range of hardware and software that can be combined with traditional craft materials and recycled items supplied by the client. The specialized materials will be furnished by Constructing Modern Knowledge, LLC. Specific items may vary.

Cardboard construction

  • Makedo
  • Rollobox
Robotics

  • LEGO WeDo
  • Hummingbird Robotics Kits
  • Pro-Bot
eTextiles/soft circuits/wearable computers

  • Lilypad Arduino Protosnap
  • Lilypad Arduino MP3
  • Flora
Computer Science, programming, and control

  • Scratch
  • Snap!
  • Turtle Art
  • Arduino IDE
  • Ardublocks
Microcontroller engineering and programming

  • Arduino Inventor’s Kits
  • Digital Sandbox
New ways to create electrical circuits

  • Circuit Stickers
  • Electronic papercraft
  • Circuit Scribe pens
  • Conductive paint
  • Squishy Circuits
Electronics and Internet of Things

  • MaKey MaKey
  • littleBits
Consumables

  • Coin cell batteries
  • Sewable battery holders
  • Foam sheets and shapes
  • Felt
  • Needles and thread
  • Conductive thread and tape
  • Fabric snaps

Additional costs may be incurred for transporting supplies and for consumable materials depending on the number of participants and workshop location(s). Groups of more than 20 participants may require an additional facilitator.

Invent To Learn books may be purchased at a discount to be used in conjunction with the workshop.


About Gary S. Stager, Ph.D.

Gary Stager, an internationally recognized educator, speaker and consultant, is the Executive Director of  Constructing Modern Knowledge. Since 1982, Gary has helped learners of all ages on six continents embrace the power of computers as intellectual laboratories and vehicles for self-expression. He led professional development in the world’s first laptop schools (1990), has designed online graduate school programs since the mid-90s, was a collaborator in the MIT Media Lab’s Future of Learning Group and a member of the One Laptop Per Child Foundation’s Learning Team.

When Jean Piaget wanted to better understand how children learn mathematics, he hired Seymour Papert. When Dr. Papert wanted to create a high-tech alternative learning environment for incarcerated at-risk teens, he hired Gary Stager. This work was the basis for Gary’s doctoral dissertation and documented Papert’s most-recent institutional research project.

Gary’s recent work has included teaching and mentoring some of Australia’s “most troubled” public schools, launching 1:1 computing in a Korean International School beginning in the first grade, media appearances in Peru and serving as a school S.T.E.M. Director. His advocacy on behalf of creativity, computing and children led to the creation of the Constructivist Consortium and the Constructing Modern Knowledge summer institute. Gary is the co-author of Invent To Learn: Making, Tinkering, and Engineering in the Classroom, often cited as the “bible of the Maker Movement in schools”.

A popular speaker and school consultant, Dr. Stager has keynoted major conferences worldwide to help teachers see the potential of new technology to revolutionize education. Dr. Stager is also a contributor to The Huffington Post and a Senior S.T.E.M. and Education Consultant to leading school architecture firm, Fielding Nair International. Gary also works with teachers and students as Special Assistant to the Head of School for Innovation at The Willows Community School in Culver City, California.He has twice been a Visiting Scholar at the University of Melbourne’s Trinity College. Gary currently works as the Special Assistant to the Head of School for Innovation at The Willows Community School in Culver City, California.

Contact

Email learning@inventtolearn.com to inquire about costs and schedule for your customized workshop. We will work with you to create an experience that will change your school, district, or organization forever. Additional ongoing consulting, mentoring, or online learning services are available to meet individual needs.

Summer Institute

Schools should also consider sending personnel to the annual summer project-based learning institute, Constructing Modern Knowledge – (www.constructingmodernknowledge.com)

A Not-So-Funny Thing Happened on the Way to the Future

© 2004 Gary S. Stager

Published by the NECC Daily Leader conference newspaper on June 22, 2004

The computer is not just an advanced calculator or camera or paintbrush; rather, it is a device that accelerates and extends our processes of thought. It is an imagination machine, which starts with the ideas we put into it and takes them farther than we ever could have taken them on our own.”  (Daniel Hillis, 1998)

This is an incredibly dark period for education. Perennial challenges are now accompanied by name-calling and public policy based on “getting tough” with third graders. Perhaps decision-makers just don’t know what learning in the digital age could look like. They need to see how kids not only learn old things in new ways, but construct personal understanding of powerful ideas in a rigorous computationally-rich fashion. Computers are today’s dominant intellectual laboratories and vehicles for self-expression.

Computers offer kids the means of production for learning via previously off-limit domains, including: music composition, filmmaking, robotics, computer science, journalism and engineering.

If only there were a place where compelling models of new educational practice could be shared… Welcome to NECC!

A few years ago, educators ceased talking about computing and started talking about technology. Suddenly computing, this remarkable invention of 20th century ingenuity, capable of transforming every intellectual domain, was dead without so much as an obituary. Conference speakers soon spoke of computers being just technology – like a zipper or Pez dispenser. This rhetorical shift liberated educators from learning to use computers, rethink the nature of curriculum or change practice to embrace the expansive opportunities afforded by computing. Information became the focus, not what kids do with computers.

In the mid-1970s my junior high required every 7th grader to learn to program a computer in nine weeks. The feelings of intellectual elation I experienced programming are indescribable. I didn’t know what was impossible so everything was possible. The computer amplified my thinking and the habits of mind I developed in Mr. Jones’ class serve me every day.

Bill Gates and Steve Wozniak enjoyed similar experiences. Imagine how the world would be different if some smart adults had not procured a mainframe and some terminals and said to Gates and Wozniak, “See what you can figure out. Have fun. Lock up when you’re done.”

How do your children’s school computing experiences compare? Do all students have access to creative tools anytime anyplace? Does the school culture inspire a thirst for knowledge and support authentic project-based work?

We’ve lowered standards when twelve year-olds in my junior high are NOW being taught to find the return key in a mandatory keyboarding class. Someday they may be “taught” to surf a filtered locked-down crippled Web incapable of downloading, rich media or collaboration all in the name of preparing them for the future. Some future.

Adults talk of how kids know so much about computers, how they are so competent, confident and fluent. Then those kids come to school and are treated like imbeciles or felons. Kid power is a gift to educators. We need to build upon those gifts and channel their students in directions they might not know exist. If kids came to school readers, we wouldn’t grunt phonemes at them. We would read better literature.

When many of us first attended NECC, we viewed the personal computer as not only a window on the future, but a microscope on the past. We knew how all sorts of learners exceed our wildest expectations when equipped with computers and constructionist software. Personal experience illuminated how the existing pencil-based curriculum was failing kids. Optimism filled the air.

Look around and you might conclude that the state-of-the-art includes: classrooms as game shows; data mining to justify standardized testing; reading as a winner-take-all race; and hysterical network security. “Technology” is being touted as a way to centralize control and breathe life into the least effective teaching practices of yore.

Widespread consensus is hard to achieve, especially on complex matters like education. Nonetheless, the educational computing community seems to have decided that our children should look forward to a future filled with testing and Microsoft Office instruction. Tests about Microsoft Office could achieve two national goals.

NECC attendees are pioneers entrusted with helping schools realize the potential of the imagination machine and as Gladwell suggests serve as the 10th Fleet in revolutionizing the context for learning. Go home and share the fabulous ideas you collect here in the Big Easy, but remember that the kids you serve expect big things from you and it won’t be easy.

CMK Founder Gary Stager, Ph.D. gave a presentation in November 2012 about the philosophy and practice of Constructing Modern Knowledge. The following video is a recording of that presentation about the institute.

Click here to register for Constructing Modern Knowledge 2013 today!

CMK 2013

 

Treat yourself or the other makers in your life to these incredible new (or old favorite) materials and sources of inspiration for future learning adventures.

Be sure to click on the links at the bottom of this list for additional materials you’ll want under the tree.

All of the recommended products are affordable and may be purchased online with one-click!

Makedo FreePlay Kit For One$15.30 (larger sets are also available)

Wicked cool reusable connectors, hinges and child-safe saws for building cardboard constructions.


Rolobox Reuseable Wheel Kit for Boxes$13.95

Wheel sets for cardboard boxes. You need these with Makedo!


Unbored: The Essential Field Guide to Serious Fun$15.67

A zillion high and low-tech project ideas and suggestions for amusing yourself.


Super Scratch Programming Adventure!: Learn to Program By Making Cool Games$13.92

A full-color project book for learning Scratch programming. It even includes a chapter on using the external Picoboard!


The Big Book of Hacks: 264 Amazing DIY Tech Projects

$16.25Really cool and beautifully photographed tech projects ideas for kids and adults alike.


Geek Mom: Projects, Tips, and Adventures for Moms and Their 21st-Century Families$13.59

The latest addition to the three book Geek Dad series for girls, their moms (plus teachers, brothers and fathers)


The Unofficial LEGO Technic Builder’s Guide$18.97

A new full-color guide to building machines out of LEGO Technic! Mechanical principles are explained clearly.


Make: LEGO and Arduino Projects: Projects for extending MINDSTORMS NXT with open-source electronics$19.75

Makers: The New Industrial Revolution

$13.98

This new book about the Maker revolution is by the former editor of Wired Magazine.

However, Neil Gershenfeld’s seminal book, Fab: The Coming Revolution on Your Desktop from Personal Computers to Personal Fabrication, does a better job of covering the “maker” revolution despite having been published seven years ago.


Big Trak$60 – 70

My late friend, Steve Ocko, invented this programmable floor turtle (robot) for Milton Bradley in 1979. There has never been a more powerful easy-to-use robot available for kids since.

The good news is that some lunatic bought the rights to the Big Trak and is manufacturing new ones 30+ years later

Kids from 5+ will play and learn with Big Trak for ages.


Makey Makey$49.95 – $59.95

There’s no adequate way to explain Makey Makey, “the invention kit for everyone,” but you need to own at least one of them!

Learn more here.


LEGO WeDo$129.95

An early-childhood robotics construction kit that may be controlled via Scratch.


Sugru
various pricesMiraculous shapeable air-cured rubber, because “the future needs fixing!

Amazing book!Highly recommended! The Cryptoclub: Using Mathematics to Make and Break Secret Codes

$36.24 (and worth it!)This fantastic book makes real mathematics come alive for kids (and teachers) grades 5 and up through the exploration of cryptography. There is plenty to keep you busy for years within this book.


New York Street Games$14.83

A star-studded documentary chronicling the dizzying variety of street games invented and played in New York City, as well as the life lessons learned playing them.

This DVD should inspire a great deal of play and creative “research” projects among young people.

The DVD

The book New York City Street Games$14.95

A terrific print guide to playing classic games including: Kings, Skellzies, Potsie, Stick Ball and Hit the Penny.

The book even comes with bottlecaps, sidewalk chalk and a “spaldeen.”


Photojojo!: Insanely Great Photo Projects and DIY Ideas

$14.66This book is filled with insanely creative ways to turn your photographs into amazing products and crazy ways to capture photographs you won’t believe. Fun for the whole family!

Check out the exciting description of projects and photo techniques included in this unique book.

I love love love these LEGO construction books! Yoshihito Isogawa’s three magnifcent wordless books of LEGO Technic project ideas are like the holy books of LEGO construction. There are enough ideas contained within to keep you building for years!The LEGO Technic Idea Book – Fantastic Contraptions

The LEGO Technic Idea Book – Wheeled Wonders

The LEGO Technic Idea Book – Simple Machines

$12-14 each

 


Painting Chinese: A Lifelong Teacher Gains the Wisdom of Youth$7.98

Legendary educator and education author, Herb Kohl’s beautiful meditation on life, teaching, learning, art and aging.

This is one of my all-time favorite books. It makes a lovely inspirational gift for the artist or educator in your life.

For grown-ups

I’m in this book, along with Phillip-Seymour Hoffman, Whoopi Goldberg, Rosie Perez, Bill T. Jones, Bill Ayers, Deborah Meiers, Lisa Delpit, Maxine Greene, Diane Ravitch and many others. The Muses Go to School: Inspiring Stories About the Importance of Arts in Education$20.06

Herb Kohl & Tom Oppenheim interviewed some of today’s most prominent artists about the educational experiences that led them to their creativity and then leading educators responded to each interview.


Surely, You’re Joking Mr. Feynman (Adventures of a Curious Character)$10.85

The first magnificent memoir by this Nobel-Prize winning physicist, raconteur and tinkerer. This is a must-read for anyone over twelve years of age.

Feynman

$19.04

A fine biography in graphic-novel format. Appropriate for teens.

 

Books by and about the ultimate tinkerer and scientist

For the frustrated parents of young tinkerers Not With Our Kids You Don’t! Ten Strategies to Save Our Schools$18.69

Parent activist Juanita Doyon offers practical advice for protecting your kids from destructive school policies like standardized testing.


Read out latest newsletter for creative educators. There you will find other book reviews and recommendations for stimulating learning adventures!


Add your email address to our mailing list for updates on CMK 2013 and for information on the forthcoming Los Angeles Education Speaker Series!