In Chapter Four of our new book, Invent to Learn – Making, Tinkering, and Engineering in the Classroom, we discuss the importance of prompt setting as a basis for project-based learning. I argue that “a good prompt is worth 1,000 words.” Projects are not the occasional dessert you get as a reward after consuming a semester’s worth of asparagus, but that the project should be a teacher’s “smallest unit of concern.

Last week, Sylvia Martinez and I completed a successful four-city Texas Invent to Learn workshop tour. Each workshop featured an open-ended engineering challenge. This challenge, completed in under two hours, was designed not only to introduce making, engineering, tinkering, and programming to educators with diverse experience, but to model non-coercive, constructionist, project-based learning.

Presented with what we hope was a good prompt, great materials, “sufficient” time, and a supportive culture, including a range of expertise, the assembled educators would be able to invent and learn in ways that exceeded their expectations. (We used two of our favorite materials: the Hummingbird Bit Robotics Kit and Snap! programming language.)

A good time was had by all. Workshop participants created wondrous and whimsical inventions satisfying their interpretation of our prompt. In each workshop a great deal was accomplished and learned without any formal instruction or laborious design process.

What’s your point?
Earlier today, our friends at Birdbrain Technologies, manufacturers of the Hummingbird Bit Robotics Kit, tweeted one of the project videos from our Austin workshop. (Workshop participants often proudly share their creations on social media, not unlike kids. Such sharing causes me to invent new workshop prompts on a regular basis so that they remain a surprise in subsequent events.)

This lovely video was shared for all of the right reasons. It was viewed lots of times (and counting). Many educators liked or retweeted it, All good!

What’s slightly more problematic is the statement of the prompt inspiring this creation.

“Problem: The Easter Bunny is sick. Design a robot to deliver eggs.”

That was not the exact prompt presented to our workshop participants. This slight difference makes all the difference in the world.

The slide used to launch the invention process

Aren’t you just nitpicking?
Why quarrel over such subtle differences in wording?

  • Words matter
  • My prompt was an invitation to embark on a playful learning adventure complete with various sizes of candy eggs and a seasonal theme. Posing the activity as a problem/solution raises the stakes needlessly and implies assessment.
  • Design a robot comes with all sorts of baggage and limits the possible range of approaches. (I just rejected the word, solutions, and chose approaches because words matter.)

People have preconceived notions of robots (good and bad). Even if we are using a material called a robotics kit, I never want children to cloud their thinking with conventional images of robots.

The verb, design, is also problematic. It implies a front-loaded process involving formal planning, audience, pain point, etc… good in some problem solving contexts, but far from universally beneficial.

The use of problem, design, and robot needlessly narrows and constrains the affective, creative, and intellectual potential of the experience.

A major objective of professional learning activities such as these is for educators to experience what learning-by-doing may accomplish. Diving in, engaging in conversation with the materials, collaborating with others, and profiting from generative design (a topic for future writing) leads all learners to experience success, even in the short time allotted for this activity. Such a process respects what Papert and Turkle called epistemological pluralism. Hopefully, such positive personal experiences inspire future exploration, tinkering, and learning long after the workshop ends.

Our book suggests that good prompts are comprised of three factors:

  • Brevity
  • Ambiguity
  • Immunity to assessment

Such prompt-setting skill develops over time and with practice. Whether teaching preschoolers or adults, I am sensitive to planting the smallest seed possible to generate the most beautiful garden with the healthiest flowers. That glorious garden is free of litter from brainstorming Post-It Notes, imagination crushing rubrics, and other trappings of instruction.

References
Martinez, S. L., & Stager, G. (2019). Invent to learn: Making, Tinkering, and Engineering in the Classroom, second edition (2 ed.): Torrance, CA: Constructing Modern Knowledge Press

Turkle, S., & Papert, S. (1992). Epistemological Pluralism and the Revaluation of the Concrete. Journal of Mathematical Behavior, 11(1), 3-33.


Veteran educator Dr. Gary Stager is co-author of Invent To Learn — Making, Tinkering, and Engineering in the Classroom and the founder of the Constructing Modern Knowledge summer institute. He led professional development in the world’s first 1:1 laptop schools and designed one of the oldest online graduate school programs. Learn more about Gary here.

”cmk09″

Buy the book!

I’m thrilled to announce that our publishing company, Constructing Modern Knowledge Press, has released a new and expanded second edition of our book, Invent to Learn: Making, Tinkering, and Engineering in the Classroom. The new book is available in softcover, hardcover, and Kindle editions.

Co-author Sylvia Martinez and CMK Press Art Director Yvonne Martinez put the finishing touches on the new book

Sylvia Martinez and I are enormously proud of how Invent To Learn has inspired educators around the world since we published the first edition. Our decision to emphasize powerful ideas over technology ensured that very little of the book became dated. In fact, the first edition of  Invent to Learn continues to sell at the age of 129 (in tech book years) and is available or currently being translated into seven languages. The book is quite likely the most cited book about the maker movement and education in scholarship and conference proposals.

The new book takes a fresh shot at addressing the three game changers: digital fabrication, physical computing, and computer programming. We include sections on the BBC micro:bit, Hummingbird Robotics, littleBits, and new programming environments for learners. The new Invent to Learn also afforded us with an opportunity to reflect upon our work with educators around the world since the dawn of the maker movement in schools. There is an enormous collection of updated resources and a new introduction. Stay tuned for more online resources to be posted at the Invent To Learn web site.

In crass terms, the new edition of Invent to Learn: Making, Tinkering, and Engineering in the Classroom is 25% longer than the original. We even debugged some six year old typos.

I was shocked by how much time and effort was required to create the new edition of Invent to LearnThe second edition actually took longer to write than the original. I think we made a good book even better.

Spoiler Alert

According to Amazon.com, the most underlined passage in Invent to Learn is this.

“This book doesn’t just advocate for tinkering or making because it’s fun, although that would be sufficient. The central thesis is that children should engage in tinkering and making because they are powerful ways to learn.”

One of the greatest honors of my life was having our book reviewed by legendary educator and author of 40+ classic books, Herb Kohl, who wrote the following.

Invent to Learn is a persuasive, powerful, and useful reconceptualization of progressive education for digital times.” (full review)

So, that’s the secret. Invent to Learn: Making, Tinkering, and Engineering in the Classroom is really about making the world a better place for kids by helping educators construct a joyous, purposeful, creative, and empowering vision of education that prepares young people to triumph in an uncertain future.

I sure hope that y0u will read our new book and share this exciting news with your colleagues!

For decades, I have marveled at the vehemence with which seemingly reasonable adults defend not teaching kids to program computers. Aside from the typical (and often dubious) justifications popularized by politicians, Hour of Code, and the Computer Science for All community, I know how learning to program in the 7th grade was an intellectual awakening that has served me well for more than four decades.

So, when #1 Canadian, Dean Shareski, posed the following tweet, I decided to take “his” question seriously and offered to speak with him about the top online. Then another person I don’t know, Shana White, called in.

I hear some suggest everyone should learn to code. Ok. But should everyone learn basic woodworking? electrical work? cooking? plumbing? automotive? Those are all good things but is time part of the issue? How do all these good things get taught? Just thinking out loud.— Dean Shareski (@shareski) September 10, 2018

For what it’s worth, some of y0u might find the conversation interesting or just use it to lull yourself to sleep.

You may listen to or download the podcast here.

#basta


Veteran educator Dr. Gary Stager is co-author of Invent To Learn — Making, Tinkering, and Engineering in the Classroom and the founder of the Constructing Modern Knowledge summer institute. He led professional development in the world’s first 1:1 laptop schools and designed one of the oldest online graduate school programs. Learn more about Gary here.

 

An old colleague, Dr. Warren Buckleitner, has been reviewing children’s media products and toys for decades. He organizes industry events about the design of products for kids while maintaining a romantic optimism that the next great app is just around the corner. However, he often feels compelled to use Dr. Seymour Papert as a negative example to support a corporate community that Papert held in great repute. It’s a neat rhetorical trick, but Warren and I have discussed what I find to be a disrespectful view of Papert in the past. This morning, I awoke to find the Children’s Technology Exchange newsletter in my inbox. The latest issue dedicates a page to something Dr. Buckleitner calls “Seymour Syndrome.”

So, I decided to set the record straight by clearing up some confusion about issues raised in his essay. (I deleted the table of content links and all of the non-relevant content in the newsletter email below in order to respect the paywall and intellectual property rights. For more information, or to subscribe to his fine publications, go to http://reviews.childrenstech.com/)

Dear Warren,

Your latest discussion caught my eye. Aside from a persistent Papert animus and fondness for negative alliteration, your critique, “Seymour Syndrome” has some bugs in it.

  1. Papert’s lifework can hardly be reduced to the foreword in Mindstorms.
  2. Dr. Papert would dislike most of the crappy “products” you feel compelled to share with the world as much, if not more so than you do. (see Does Easy Do It? Children, Games and Learning)
  3. There is not a millimeter of daylight between Piaget and Papert. (see Papert on Piaget)
  4. Piaget’s work wasn’t about hands-on, it was focused on learning through concrete experiences. That’s not the same thing. (See The Conservation of Piaget: The Computer as Grist to the Constructivist Mill or even Ian’s Truck.)
  5. Papert was not Piaget’s student. Papert had earned two mathematics Ph.D.s by the time Piaget hired him as a collaborator.
  6. What is considered “getting kids to code” today is a denatured view of Papert’s vision about democratizing agency over computers.
  7. I’m not sure what a direction variable is, but 1) kids play games and sing songs using syntonic body geometry (like the turtle) from a very early age and 2) lots and lots of kids can use RIGHT and LEFT to learn directionality long before they’re eight or nine years-old.
  8. Papert’s “gear” story is a metaphor. His life’s work was dedicated to creating the conditions in which children could fall in love with powerful ideas naturally and with lots of materials, technologies, and experiences. His book, The Children’s Machine: Rethinking School in the Age of the Computer, discusses the importance of sharing learning stories.
  9. Papert wasn’t “led to Logo.” He, along with Wally Feurzig and Cynthia Solomon invented Logo. The fact that you’re still talking about it 50 years later points to at least its durability as an “object to think with.” (Here is a video conversation about Logo’s origins with two of its inventors.)
  10. Scratch can be considered Papert’s grandchild. I’m glad you like it.
  11. Most of the products you review make “exaggerated” claims about their educational properties. Why should this one be any different? Why blame Papert? (Dr. Papert wrote an entire book of advice for parents on avoiding such products and substituting creative activities instead. See The Connected Family – Bridging the Digital Generation Gap)
  12. The current CS4All, CSEdWeek, Hour-of-Code efforts are almost entirely “idea averse” (a great Papert term) and could really stand to learn a few things from Dr. Papert.

BTW: Thanks for your review of the CUE robot. It was helpful. Imagine if these toys had the extended play value of a programming language, like Logo? I’ve been using and learning with Logo for close to 40 years and have yet to tire of it. I sure wish you could have seen me teach Logo programming to 150 K-12 educators last week in Virginia. It was magnificent.

Happy holidays!

Gary

PS: I wonder why so many people feel so comfortable calling Dr./Professor Seymour Papert by his first name? Nobody calls Dewey, “John,” or Piaget, “Jean.”

On December 7, 2017 at 8:31 AM Children’s Technology Review wrote:

CTR Weekly – December 7, 2017
View this email in your browser
“Human relationships matter most.”  

 

 

RECOGNIZING SEYMOUR SYNDROME
See page 4 Recognizing “Seymour Syndrome”  Seymour Papert was a gifted individual. I mean no disrespect to his legacy by this article. I’ve seen how his ideas about children and coding have misled well-intentioned adults in the past.  Fast forward 40 years, and history is repeating itself. From reading Seymour Papert’s 1980 book, Mindstorms, we learn that he was fascinated by gears as a child. “Playing with gears became a favorite pastime. I loved rotating circular objects against one another in gearlike motions and, naturally, my first ‘erector set’ project was a crude gear system.” Papert wanted every child to have such mindstorms, which led him to Logo; an early programming language. Throughout the 1980s and early 1990s, many educators suffered from “Seymour Syndrome” — meaning an idealistic optimism that coding was the key to a better future. There was a rush to enroll children in coding camps. I know this because I was one of the teachers. I started calling all the hype “Seymour Syndrome” people trying to get young children to code, before they can understand what is going on. Today’s market has once again flooded with commercial coding-related apps, robots and games being sold with the promise that they can promote science, technology, engineering and math (STEM). Cubetto is one of these. The symptoms are in the marketing materials that name-drop Montessori, and claim that time with this rolling cube will  “teach a child to code before they can read.” Cubetto’s coding means finding six AA batteries and plotting out the course of a slow moving rolling cube on a grid. You do this by laying direction tiles on a progress line and pressing a transmit button.  I shudder to think that teachers are spending time attempting to “teach” children how to “code” thinking that this actually as something to do with “teaching” children how to “code” to fulfill a STEM objective. Students of child development know that preschool and early elementary age children learn best when they are actively involved with hands on, concrete materials. Papert’s teacher — Jean Piaget called the years from 3 to 7 “concrete operations” for a reason. The motions of the cube should be directly linked to the command, or better yet, the child should be in the maze, for a first-person point of view. ‘ Good pedagogy in the early years should be filled with building with blocks, playing at the water table filling and emptying containers, moving around (a lot) and testing language abilities on peers. If you want to use technology, get them an iPad and let them explore some responsive Sago Mini apps. Spend your $220 (the cost of a Cubetto) on several a low cost, durable RC vehicles that deliver a responsive, cause and effect challenge. Let the direction variables wait until the child is eight- or nine-years of age, when they can use a program like Scratch to build an entire program out of clusters of commands. As far as the “coding” part, save your pedagogical ammo for materials that match a child’s developmental level.

LITTLECLICKERS: PROJECTION MAPPING
Do you like to play with shadows? If so, you’ll love projection mapping. That’s when you use a computer projector to create a cool effect on a ceiling or building. Let’s learn some more.   1. What is projection mapping? According to http://projection-mapping.org/whatis/ you learn that it’s simply pointing a computer projector at something, to paint it with light. You can play a scary video on your house a Halloween, or make Santa’s sled move across your ceiling during a concert. The possibilities are endless. Visit the site, at www.littleclickers.com/projectionmapping


Website
YouTube
Facebook
Twitter

Subscribe to Children’s Technology Review for $60/year 

OBJECTIVE • AD FREE • COMPREHENSIVE REVIEWS OF CHILDREN’S TECHNOLOGY, SINCE 1993

This email message contains no sponsored content or purchase links. It is sent to paid subscribers of Children’s Technology Review. Please forward to a friend or a colleague, but only if you think they might become a paid subscriber.
WE APPRECIATE THE SUPPORT OF OUR WORK. 

Copyright © 2017 Children’s Technology Review, 126 Main Street, Flemington NJ 08822. All rights reserved.

Our email address is: info@childrenstech.com
To update subscription preferences by phone: 908-284-0404 (9 to 3 EST)

About the author

Veteran educator Dr. Gary Stager is co-author of Invent To Learn — Making, Tinkering, and Engineering in the Classroom and the founder of the Constructing Modern Knowledge summer institute. He is also the curator of the Seymour Papert archive site, The Daily Papert. Learn more about Gary here.

The irony could cause whiplash. Over the past thirty years, the EdTech community expended sufficient energy to colonize Mars fighting the idea of teaching children to program computers. I cannot think of another single example in education where so much effort was invested in arguing against children learning something, especially ways of knowing and thinking so germane to navigating their world. Now, the very same folks responsible for enforced ignorance, disempowerment, and making computing so unattractive to children are now advocating “Computer Science for All.”*

There seems to be little consensus on what CS4All means, few educators prepared to teach it, no space in the schedule for a new course of study, and yet a seemingly unanimous desire to make binary, algorithm, and compression first grade spelling words. The sudden interest in “coding” is as interested in the Logo community’s fifty years of accumulated wisdom as Kylie Jenner is interested in taking Ed Asner to St. Barts.

So, amidst this morass of confusion, turf battles, and political posturing, well intentioned educators resort to puzzles, games, and vocabulary exercises for say, an hour of code.

I wish I had 0101 cents for every educator who has told me that her students “do a little Scratch.” I always want to respond, “Call me when your students have done a lot of Scratch.” Coding isn’t breaking a code like when you drunken insurance salesman go to an Escape Room as a liver bonding exercise. The epistemological benefit of programming computers comes from long intense thinking, communicating your hypotheses to the computer, and then either debugging or embellishment (adding features, seeking greater efficiency, decorating, testing a larger hypothesis).

Fluency should be the goal. Kids should be able to think, write, paint, compose, and dance with code. I recently met a team of sixth grade girls who won a contest for creating the “best app.” It was pretty good. I asked, “What else have you programmed?” and received blank stares. When I asked, “What would you like to program next?” the children all turned to look at the teacher for the correct answer. If the kids were truly learning to program, they would be full of independent ideas for what to do next.

Children have a remarkable capacity for intensity and computer programming is an intellectual and creative outlet for that intensity. When I learned to program in a public middle school in 1975, I felt smart for the first time in my life. I could look at problems from multiple angles. I could test strategies in my head. I could spend days thinking of little more than how to quash a bug in my program. I fell in love with the hard fun of thinking. I developed habits of mind that have served me for more than four decades.

So, for schools without a Mr. Jones to teach a nine-week mandatory daily computer programming class for every seventh grader, I have a modest proposal that satisfies many curricular objectives at once.

Whether your goal is literacy, new literacy, computer literacy, media literacy, coding, or the latest vulgarity, close reading, my bold suggestion offers a little something for everyone on your administrative Xmas list.

Give the kids a book to read!

That’s right. There are two very good books that teach children to program in Scratch using a project-approach. The books are completely accessible for a fifth grader. (or older) Here’s what you do.

  • Buy a copy of one of the recommended books for each student or pair of students.
  • Use the book as a replacement text.
  • Ask the students to work through all of the projects in the book.
  • Encourage kids to support one another; perhaps suggest that they “ask three before me.”
  • Celebrate students who take a project idea and make it their own or spend time “messing about” with a programming concept in a different context.

There is no need for comprehension quizzes, tests, or vocabulary practice since what the students read and understand should be evident in their programming. Kids read a book. Kids create. Kids learn to program.

There is a growing library of Scratch books being published, but these are the three I recommend. [Note: I added the first one since the original publication of this article.]

Code Your Own Games! 20 Games to Create with Scratch by Max Wainewright, is a lovely 80-page spiralbound book with gorgeous graphics and a non-nonsense approach to helping kids learn to program in Scratch by creating twenty different game projects sequenced by degree of difficulty. Most projects are started in 2–4 pages, with extension challenges and plenty of open-ended project ideas shared. I discovered this book a few months after originally posting this article and am a big fan. It’s inexpensive and makes a great gift for any kid, especially since the book doesn’t feel intimidating.

Super Scratch Programming Adventure! : Learn to Program by Making Cool Games is a graphic novel filled with Scratch projects.

Scratch For Kids For Dummies by Derek Breen is a terrific project-based approach to learning Scratch.

If per chance, thick books scare you, there are two excerpted versions of Derek Breen’s Scratch for Kids for Dummies book, entitled Designing Digital Games: Create Games with Scratch! (Dummies Junior) and Creating Digital Animations: Animate Stories with Scratch! (Dummies Junior). Either would also do the trick.

Growth

I must admit to being alarmed by the frequency with which many educators tell me that their students “Do a little Scratch.” Scratch and “Hour-of-Code” type activities present an illusion of simplicity that is misleading. Fluency only develops from doing “a lot of Scratch.”

Although my copy of this new book has yet to arrive, I’m intrigued by a more advanced Scratch book for kids written by the gentleman who wrote the delightful book, Code Your Own Games! 20 Games to Create with Scratch. Therefore, I’m cautiously recommending his book, Generation Code: I’m an Advanced Scratch Coder. The emergence of “advanced” Scratch programming books provides evidene of growth in the community and enhances the sustainability of the programming language.

Another Must-Have

Natalie Rusk’s terrific Scratch cards are a must-have for any Scratch-using classroom.

Check it out

You might also enjoy The Invent To Learn Guide to Block Programming.

Shameless plug

Sylvia Martinez and I wrote a chapter in the recent book, Creating the Coding Generation in Primary Schools.

* There are a plethora of reasons why I believe that Computer Science for All is 
doomed as a systemic innovation, but I will save those for another article.

Veteran educator Dr. Gary Stager is co-author of Invent To Learn — Making, Tinkering, and Engineering in the Classroom and the founder of the Constructing Modern Knowledge summer institute. Learn more about Gary here.

What I Did on My Three Summer VacationsBy Brian Silverman
Illustrated by Peter Reynolds

Previously published in Mathematics and Informatic Quarterly (in Bulgaria) prior to this version appearing in the Fall 1998 issue of Logo Exchange. Volume 17. Number 1.

We finally did it. We made it through the maze in Montreal’s Old Port in eleven minutes. There’s a really good chance that our time is the all-time record!

It all started a few years ago when my daughter, Diana and I were biking and found ourselves in Montreal’s Old Port. There was a new attraction called S.O.S. Labyrinthe, that promised a pirate adventure. It turned out to be a giant indoor maze in an old warehouse building with a handful obstacles with a pirate theme. The “pirates” were kids on roller blades providing help to the desperately lost and confusion to the rest of us.

The maze is a twenty-by-eighty grid of about two metre squares. The walls are made of thick plastic sheets hung between poles that are placed at the grid points. Four small sections of the maze have been built up to resemble a ship’s bridge, an engine room, a cargo hold, and lockers for the crew. These four checkpoints have hidden stampers to stamp a card received when you enter the maze.This card is also time-stamped when you first enter then maze and again when you leave.

When Diana and I first tried we got lost almost immediately. It took us about an hour and twenty minutes to find our way out and get all the stamps we needed. Despite being lost most of the time we enjoyed it so much that we went back the following week. This time we brought my son Eric along because he’d missed the first time through. The second time, to avoid getting lost, we decided to follow a set of simple rules that, as any little robot will tell you, can help to get you out of most mazes.

The rules are:

  1. turn right whenever you can
  2. turn around when you reach a dead end.

That’s all there is to it and it actually works. We followed the rules and managed to make it through the maze in about twenty two minutes. When we finished the pirate behind the desk put our names on the board as the group that had the best time of the day. He mentioned in passing that it was a better time than he sees most days.

The challenge at this point was obvious. Our goal was to get the best time ever. We only had to figure out how. I had a plan that I thought would be pretty simple. However, as is almost always the case, it didn’t turn out to be as simple as I’d initially imagined. The plan was this: Go through the maze twice. The first time through bring along a little computer to record our path. Then go home, draw a map, find the best route and go back the following day and go through running as fast as we can.

There were a couple of immediate problems. The first one was pretty easy to resolve. How could we be sure that the maze didn’t change on us between the first run and the second? (The plastic panels are moved on a regular basis to keep the maze from staying the same.) A couple of phone calls and oblique questions later, we’d found out that the maze is only changed once a week, on Thursday night. The second immediate problem was trickier to resolve. Our plan required little computers to record our path. We didn’t have any little computers. Even if we did we wouldn’t know how to make them record paths.

My friends at MIT had little computers. We’d been working for a few years on making “programmable LEGO bricks”. At that time we were at the point where we’d had a couple of prototypes that had worked for a bit but none of them were reliable enough for the task. However as a result of a sort of spinoff of that project there were some little computer boards around that weren’t much bigger than a deck of cards. I asked my friend Randy Sargent if I could borrow one. He mailed it to me and I had it within a few weeks. Unfortunately by then the season was over and the project would have to wait until the next summer.

During the course of the winter a couple of things happened. One was that I had a lot of fun programming the little computer board I’d received. Over Christmas I played with making a tiny version of Logo. By New Year’s we had Logo programmable LEGO robots that didn’t need to be attached to a big computer. At the same time Randy had been working on perfecting a new programmable brick. By the following summer these came together and we had a programmable brick and a logo program for saving information about where in the maze we’d been.

Little computers are pretty stupid. We would have liked to have been able to just carry one along and have it remember where it had been. But the little computer wasn’t up for the task. What we did instead was attach a couple of pushbuttons to it. One to click the number of “squares” we’d gone forward, the other to click in the amount that we’d turned at each corner.

The summer mostly slid away before we got around to trying a second run. When we did get around to it, it was just Eric and me. Before getting into the maze we’d attached the brick to his belt, run some wires up his shirt and down the sleeves to the pushbuttons in his hands. Unless you were looking hard you wouldn’t have noticed anything suspicious. We scoped out the maze counting out loud on the straightaways and yelling out directions at the corners. People looked at us a bit strangely in general and were particularly confused and curious when we had to bring out the brick for minor adjustments.

We didn’t do too well on that round. The brick started misbehaving about three quarters of the way through. And even if it hadn’t, the recorded data had lots of mistakes in it. With a lot of guessing and processing we were able to construct about a quarter of the map but no more. Since it was late summer we gave up again for the year figuring we’d pick it up again the following year.

The next winter was a good one for programmable bricks. When we did the second run there were only five working bricks in the world and even those five needed a fair amount of babysitting. By the next summer, there had been several new iterations of the design (largely the work of Fred Martin) resulting in dozens of working bricks that were solid enough that we wouldn’t have to worry too much about hardware failures for the next round.

Also, during the winter there was plenty of time to think about what went wrong the previous summer. The main problem was that mistakes in clicking the buttons led to so much distortion in the map that it was completely useless. The maze is so big, (more than a thousand straightaways and turns), that it’s impossible to do the kind of recording that we did without making mistakes. We thought a bit about eliminating mistakes but decided instead to run the experiment with several programmable bricks simultaneously, do the recording several times separately then regroup and compare results.

As it turns out, Randy and another friend, Carl Witty were planning to come to Montreal towards the end of the summer to show off their robots at an artificial intelligence conference. They arrived with a car full of computers, tools, and robot parts. Their robots all come with cameras connected to electronics that can discriminate colors. Their demos included robots chasing balls and each other at high speeds. It seemed only natural to get them involved in the third round.

We had a lot of discussion about whether or not we could use the vision systems they had in their robots for more automatic data gathering. We decided not to because even if we could resolve all the computer issues, we weren’t sure that we had enough batteries for all of the needed electronics for the time it’d take. We did decide, however, that since they had brought along several miniature cameras we’d take a video record of first trip through and use that to help interpret the data we’d get from the computers.

Carrying a camera around a maze really didn’t seem subtle enough. Instead we took the camera and sewed it into a hat with only the lens sticking out the front. The camcorder fit neatly in a backpack. By the time we were ready to go, Carl, Randy and I each had a programmable brick rubber banded to our belts and Eric had a camera in his hat. The data gathering run took about two hours and was pretty boring. The bricks kept disagreeing with each other but we ignored this because we decided to sort it all out later. Eric, originally worried that he’d attract too much attention with the camera ended up not being able to convince anyone that he actually had one.

We brought the electronics home, dumped the data to three separate laptop computers and then spent an evening that didn’t quite turn into an all nighter trying to make some sense of it. For hours there was Randy, Carl, and I each with our own computer bouncing sequence numbers, grid locations, and reports of similarities and differences in data between us. My wife Erlyne and the kids watched for some of this, enjoyed part of the video but abandoned us when it seemed that we’d really fallen off the deep end. We persisted and after spending some time getting a feel for the method to the madness we decided to systemically play through the video noting when everything looked to be working and stopping the tape and fudging when it didn’t. Our stamina ran out before the tape did and we gave up for the night with about three quarters of the map in place.

The next morning, we all felt refreshed and raring to go. In less that two hours the printer was churning out copies of a complete maze map . We were about to set off when Eric asked why each of us had to go to get stamps at each of the places rather than splitting up the job. We realized pretty quickly that he had a point. There was a rule against going through the walls. There wasn’t a rule against the cards with the stamps going through the walls. It took us about a half an hour of staring at the map and thinking to come up with a plan that involved three teams and three relay points to pass the cards along like a baton in a relay race. Eric and I had the first stretch, passed the cards to Randy and then headed off to where Randy would pass them back after having met Carl twice along the way.

It all worked like clockwork. The maps were accurate, the plan workable. Eric and I had the first stamp in less that two minutes and found Randy in another two. When we called him through the plastic wall he didn’t answer but his hand appeared. He said later that a pirate was standing right beside and he was trying to not attract any attention. After the handoff we headed to the final relay point where we met up with Carl and got the cards through the wall from Randy. From there it was just a quick run to the end to get the last time stamp. It had taken eleven minutes, much less time than we had imagined possible.

We went to see the pirate at the desk. The board of daily winners wasn’t around any more. We showed him our card that confirmed that we’d done it in eleven minutes. He said that if we did it that fast we must have cheated. Maybe it’s true. Throwing that much technology at a problem may be cheating. On the other hand, it may just be another way of solving it


About the author

Since the late 1970s, Brian Silverman has been involved in the invention of learning environments for children. His work includes dozens of Logo versions (including LogoWriter & MicroWorlds), Scratch, LEGO robotics, TurtleArt and the PicoCricket. Brian is a Consulting Scientist to the MIT Media Lab, enjoys recreational math, and is a computer scientist and master tinkerer. He once built a tictactoe-playing computer out of TinkerToys. Brian is a longtime faculty member of the Constructing Modern Knowledge summer institute.

You can also visit Brian’s Wikipedia page here.

About the illustrator

Peter H. Reynolds co-founded FableVision, Inc., in 1996 and serves as its Chairman. Mr. Reynolds produces award-winning children’s broadcast programming, educational videos and multimedia applications at FableVision, Inc. He served as Vice President and Creative Director of Tom Snyder Productions for 13 years.

He is also an accomplished writer, storyteller and illustrator, and gets his enthusiasm and energy to every project he creates. His bestselling books about protecting and nurturing the creative spirit include The Dot, Ish, and So Few of Me (Candlewick Press). His cornerstone work, The North Star (FableVision), The SugarLoaf book series (Simon & Schuster), My Very Big Little World and The Best Kid in the World, are the first of Peter’s many books about an irrepressible little girl who sees the world through creative-colored glasses. He has recently co-authored several popular books with his twin brother, Paul.

The film version of The Dot (Weston Woods) went on to win the American Library Association’ (ALA’s) Carnegie Medal of Excellence for the Best Children’s Video of 2005 and the film version of Ish was announced as one of ALA’s 2006 Notable Children’s Videos. His other series of original, animated film shorts, including The Blue Shoe, Living Forever and He Was Me, have won many awards and honors around the globe.

Peter’s award-winning publishing work also includes illustrating New York Times1 Best Seller children’s book, Someday (Simon & Schuster), written by Alison McGhee – a “storybook for all ages.” He illustrated the New York Times best-selling Judy Moody series (Candlewick) written by Megan McDonald, Eleanor Estes’ The Alley and The Tunnel of Hugsy Goode, Judy Blume’s Fudge series (Dutton), and Ellen Potter’s Olivia Kidney books

Peter Reynolds was a guest speaker at the 1st and 10th annual Constructing Modern Knowledge summer institute.

The following videos are a good representation of my work as a conference keynote speaker and educational consultant. The production values vary, but my emphasis on creating more productive contexts for learning remains in focus.

  • For information on bringing Dr. Stager to your conference, school or district, click here.
  • For biographical information about Dr. Stager, click here.
  • For a list of new keynote topics and workshops by Dr. Stager, click here
  • For a list of popular and “retired” keynote topics by Dr. Stager, click here.
  • For family workshops, click here.
  • To learn more about the range of educational services offered by Dr. Stager, click here.

View Gary Stager’s three different TEDx Talks from around the world

Watch Gary Stager: My Hope for School from Gary Stager on Vimeo.
This clip is part of the documentary Imagine It 2


2016 short documentary featuring Dr. Stager from Melbourne, Australia.



Learning to Play in Education: Joining the Maker Movement
A public lecture by Gary Stager at The Steward School, November 2015

Dr. Gary Stager Visits the Steward School, 2015

A Broader Perspective on Maker Education – Interview with Gary Stager in Amsterdam, 2015

 Choosing Hope Over Fear from the 2014 Chicago Education Festival


This is What Learning Looks Like – Strategies for Hands-on Learning, a conversation with Steve Hargadon, Bay Area Maker Faire, 2012.


Gary Stager “This is Our Moment “ – Conferencia Anual 2014 Fundación Omar Dengo (Costa Rica)
San José, Costa Rica. November 2014

 

.
Gary Stager – Questions and Answers Section – Annual Lecture 2014 (Costa Rica)
San José, Costa Rica. November 2014

TEDx Talk, “Seymour Papert, Inventor of Everything*


Ten Things to Do with a Laptop – Learning and Powerful Ideas
Keynote Address – ITEC Conference – Des Moines, Iowa – October 2011


Plenary Talk at Construtionism 2014 Conference
Vienna, Austria. August, 2014

 


Children, Computing and Creativity
Address to KERIS – Seoul, South Korea – October 2011

 


Gary Stager’s 2011 TEDxNYED Talk
NY, NY – March 2011

 


Gary Stager Discusses 1:1 Computing with leading Costa Rican educators
University of Costa Rica – San José, Costa Rica – June 2011

 

Progressive Education and The Maker Movement – Symbiosis or Mutually Assured Destruction? (approx 45:00 in)
FabLearn 2014 Paper Presentation
October 2014. Stanford University

Keynote Address: Making School Reform
FabLearn 2013 Conference.
October 2013. Stanford University.

Making, Love, and Learning
February 2014. Marin County Office of Education.


Gary Stager’s Plenary Address at the Constructionism 2010 Conference
Paris, France – August 2010

 


Gary Stager Excerpts from NECC ’09 Keynote Debate
June 2009 – Washington D.C.

For more information, go to: http://stager.tv/blog/?p=493

 


Dr. Stager interviewed by ICT Qatar
Doha, Qatar – Spring 2010

 


Learning Adventures: Transforming Real and Virtual Learning Environments
NECC 2009 Spotlight Session – Washington, D.C. – June 2009
More information may be found at http://stager.tv/blog/?p=531

 

© 2009-2016 Gary S. Stager – All Rights Reserved Except TEDxNYED & Imagine IT2 clip owned by producers

Using Computers as Creative Tools
The debate about technology’s place in classrooms might vanish if the machines are used to expand students’ self-expression
Be sure to read to bottom!


A version of this column appeared in the March 2001 issue of Curriculum Administrator Magazine.

I recently attended attended Apple Computer CEO Steve Job’s keynote address at the annual Macworld Conference in San Francisco. Amidst the demonstrations of OS X, the launch of the sexy new Titanium Powerbook and the obligatory race between a Pentium IV and Macintosh G4 (you can guess which won), Jobs said some things that I believe will be critically important to the future of computing.

Quotations from the CEOs of Gateway and Compaq decrying the death of the personal computer were rebuffed by Jobs who not only asserted that the PC is not dead, but that we are entering a new age of enlightenment. Steve Jobs declared that the personal computer is now “the digital hub for the digital lifestyle.”

While everyone is excited about new handheld organizers, video cameras, cell phones and MP3 players, these devices not only require a personal computer for installing software, backing up files and downloading media – they are made more powerful by the PC. The personal computer is the only electronic device (at least for the foreseeable future) capable of multimedia playback, supercomputer-speed calculations and massive data storage. Most importantly, the personal computer is required for those who wish to create, rather than be passive recipients of bits generated by others.

Jobs discussed how video cameras are cool, but iMovie makes them much more powerful. Boxes full of videotapes are no longer lost in the attic, because you can easily produce edited movies shareable with friends, relatives and the world. Jobs then launched iDVD, Apple’s stunning new technical breakthrough that allows anyone to create their own DVDs in minutes. Think about what this could mean in a classroom! Class plays, science experiments and sporting events could be shared with the community and playable with state-of-the-art quality on the home television. Video case studies of best practice can be used in teacher education complete with digital quality audio/video. Zillions of digital photos and scanned images of student work can be assembled as portfolios stored on one disk and viewed anywhere.

A company representative from Alias Wavefront was brought to the stage to demonstrate their software package, Maya. Maya is the 3D graphics tool used by George Lucas to make the most recent Star Wars film and by all of last year’s Oscar nominees for best special effects to work their artistic magic. The quick demo showed how a flower paintbrush could be chosen and with the wave of the mouse flowers could be drawn in 3D on the computer screen. These were no ordinary flowers though. The software knew to make each flower slightly different from the others, as they would appear in nature. The software also knew how they would behave if wind were to be added to the scene. Clouds drawn knew to move behind the mountains. Until now, Maya required a specially configured graphics workstation. It now runs on a Macintosh G4. While the software is currently too expensive for most kindergarten classrooms, it occurred to me that the world will be a much cooler place when five year-olds can use Kid-Pix-level fluency to create with the same tools as George Lucas. Perhaps then they will stop blowing up their Kid-Pix creations and express themselves through film.

Jobs argued that iMovie makes video cameras more powerful and iDVD enhances the value of both the video camera and DVD player. Therefore, the personal computer not only powers digital devices, but empowers our lives. This is a profoundly liberating and enabling vision for society.

As I left the auditorium I thought, “Steve Jobs really gets it!” However my admiration for his vision and desire for the new “toys” was quickly tempered by thoughts regarding the imagination gap guiding the use of computers in schools. Not once did Jobs compare the PC to the pencil or refer to it as a tool for getting work done. No standards for computer-use were offered. Instead, he challenged us to view the computer as a way of inspiring a renaissance of human potential.

Just Make Something
The personal computer is the most powerful, expressive and flexible instrument ever invented. It has transformed nearly every aspect of society, yet schools remain relatively untouched. Rather than be led by technological advances to rethink models of schooling, schools and the software industry have chosen to use computers to drill for multiple-choice tests, play games and find answers to questions available in reference books via the Internet. While the Internet is an incredibly powerful and handy reference tool, it’s real potential lies in its ability to democratize publishing and offer unprecedented opportunities for collaboration and communication. The dominant practice is to restrict or forbid this openness through filtering software, acceptable-use policies and overzealous network administrators. When the paradigm for Internet use is “looking stuff up” it should come as no surprise that kids are going to look at inappropriate content.

The results of this imagination paralysis are too numerous to mention. The hysteria over Internet use, growing disenchantment with schooling and calls to reduce tech funding are clearly the consequences of our inability to create more explicit, creative and public models of computers being used by children to learn in magnificent ways. The recent dubious report, Fool’s Gold, by the Alliance for Childhood, takes aim at school computer-use by illustrating the trivial and thoughtless ways computers are used in schools. A moment of candor requires us to admit that most of their criticisms are valid. Schools do use computers in dopey ways. However, that is not a legitimate argument for depriving kids of the opportunity to learn and express themselves with computers. It is however an indictment of the narrow ways in which schools use technolology. Experts advocating the use of handheld devices as “the perfect K-12 computer” so that students may take notes or have homework assignments beamed to them are cheating our young people out of rich learning adventures.

It’as if schools have forgotten what computers do best. Computers are best at making things – all sorts of things. Educational philosophers including Dewey, Piaget, Papert, Vygotsky, Gardner have been telling us forever that the best way to learn is through the act of making things, concrete and abstract. The PC is an unparalleled intellectual laboratory and vehicle for self-expression yet schools seem ill-equipped or disinclined to seize that potential.

Kids can now express their ideas through film-making, web broadcasting, MIDI-based music composition and synchronous communication. They can construct powerful ideas (even those desired by the curriculum) through robotics, simulation design and computer programming.

While there is much rhetoric about kids making things with computers, those projects tend to reinforce old notions of teaching. Hyperstudio book reports or databases containing the pets owned by classmates are not what I have in mind. Kids should make authentic things borne of their curiosity, interests and reflecting the world in which they live.

I cannot imagine that the critics of public education and the investment in educational technology would object to kids using computers in such authentic, deeply intellectual and creative ways. Rather than creating unproductive standards for computer use, educational computing organizations should be building, documenting and sharing compelling models of how computers may be used to inspire joyful learning throughout the land.

Seymour Papert has proposed that we “view the computer as material.” This material may be used in countless wonderful and often unpredictable ways. Teachers are naturally gifted with materials of all sorts and the computer should be part of that mix. This change in focus should reap rewards for years to come.

We can do good and do well by exercising a bit more creativity. We can neutralize our critics and move education forward if we shift our focus towards using school computers for the purpose of constructing knowledge through the explicit act of making things. Children engaged in thoughtful projects might impress citizens desperate for academic rigor. Emphasizing the use of computers to make things will make life easier for teachers, more exciting for learners and lead schools into this golden age. [Emphasis 2016]

Scanned PDF of the original article 

A response to the plethora of articles spouting hooey similar to this article – Saving Computer Science from Itself

(Regrettably, I will undoubtedly be compelled to write more on this topic in the future. In the meantime, here is my answer to the “should we teach kids to code” argument)

As someone who has taught countless children (from preschool) and their teachers to program across the curriculum for 34 years, I disagree with lots of the arguments in this article. I agree that we have done an awful job of defining CS AND reaching any rational consensus of why it is critical that every child learn computer science.

The larger argument I would like to make is that this is not a matter of opinion.

Programming gives children, every child, agency over an increasingly complex and technologically sophisticated world. Computer science is a legitimate science; perhaps the most significant advancement in science of the past century. It is foundational for all other science. THEREFORE, IT MUST BE TAUGHT AND USED WELL BY EVERY CHILD. Computer science gives kids access to complexity and provides an authentic context for learning the crummy mathematics content we dispense to defensless children.

One might also discuss the terrible (or nonexistent) job we do of teaching ANY science to children (below secondary grades). Oh yeah, add art, instrumental music, civics, mathematics, and history to that list as well.

The difference between Computer Science and all of the other stuff we don’t bother to teach is the vehemence with which nearly two generations of educators have fought to democratize computer science and keep it out of the classroom. There are countless examples of far less relevant and less fun bullshit we fill kids’ school days with.

Furthermore, ISTE cannot be trusted to play any leadership role in this effort. They have disqualified themselves from having any voice in discussions about the future of computing in schools. I signed the ISTE charter, edited their last computer science journal for several years, and have spoken at the last 28 of their conferences. I even co-authored the cover story for the last issue of their magazine, “Learning and Leading with Technology.” However, ISTE’s self-congratulatory pathetic “standards” for educational computing do not contain the word, “programming,” anywhere. There are no powerful ideas they embrace, just some mindless notion of “technology good.”

I’ve written about ISTE before:

Refreshing the ISTE Technology Standards
Senior Editor Gary Stager interviews Don Knezek, CEO of ISTE, on the revised National Educational Technology Standards(NETS). Plus: Stager’s perspective.
Published in the June 2007 issue of District Administration

The ISTE Problem
ISTE’s vague standards and an exclusionary “seal of alignment” make one wonder whose side the group is on.
Published in the February 2003 issue of District Administration

Educational Conference or Boat Show?(2007)

Why not ask the Wolfram brothers or Seymour Papert about the value of children programming? Why are we relying on the “vision” of politicians or tech directors whose primary concerns are about plumbing and getting Math Blaster to run on Chromebooks connected to an interactive whiteboard?

The UK example is exactly NOT what we should be doing. Their curriculum (scope, sequence, content) makes no sense and bares very little resemblance to computer science. Like other “Coding” or ill conceived computer science curricula written by government committee, the UK curriculum doesn’t even need a computer. AND when you make a hierarchical curriculum, IF needs to be in 2nd grade while THEN gets introduced in a subsequent year. The only way you become good at computer science is by revisiting ideas and techniques in lots of projects – just like in any other medium.

Puzzles are not CS. An hour of “code” is not CS. Using Scratch for a few sessions or storyboarding are not CS.

There is no length to which people will not resort to deprive children of learning to program computers.

Oh yeah, the issues of efficacy, equity, etc you mention have been studied for decade. We know what to do.

I could go on….

In addition to the popular minds-on/hands-on Invent to Learn workshops already offered by Constructing Modern Knowledge, I’m pleased to announce a brand new set of exciting, informative, and practical workshops for schools, districts, and conferences for 2015. Family workshops are a fantastic way to build support for learning by doing in your school.

For more information, email learning@inventtolearn.com. Please include type (workshop, keynote, consulting, etc.), approximate dates, location, and any additional details. We’ll get back to you ASAP!

New Workshops

PBL with littleBits™ new tiny dingbat

littleBits are incredibly powerful snap-together electronic elements that allow learners of all ages to create a wide array of interactive projects. Arts and crafts meet science and engineering when littleBits are available for pro typing or creating super cool new inventions. In addition to knowledge construction with littleBits, participants will explore the following topics.

  • What makes a good project?
  • Effective prompt setting
  • Project-based learning strategies for exploring powerful ideas
  • Less Us, More Them

Wearable Computing new tiny dingbat

An LED, battery, and conductive thread can bring principles of electronics and engineering to learners of all ages. Interactive jewelry, bookmarks, and stuffed toys become a vehicle for making powerful ideas accessible to a diverse population of learners. More experienced participants may combine computer science with these “soft circuits” or “e-Textiles” to make singing suffer animals, animated t-shirts, jackets with directional signals, or backpacks with burglar alarms with the addition of the Lilypad Arduino or Flora microcontroller. Design, STEM, arts, and crafts come to life in this fun and exciting workshop! 

Reycling and Robotics
new tiny dingbat

This workshop uses the incredible Hummingbird Robotics Kit to show how a powerful and easy-to-use microntroller designed for the classroom, common electronic parts (motors, lights, sensors) may be combined with recycled “found” materials and craft supplies to create unique interactive robots from Kindergarten thru high school.  Scratch and Snap! programming brings these creations to life. No experience is required to become a master robotics engineer! Cross-curricular project ideas will be shared.

Introduction to Microcontroller Projects and Arduino Programming
new tiny dingbat

The Arduino open-source microcontroller is used by kids, hobbyists, and professional alike. Arduino is at the heart of interactive electronics projects and is perfect for classroom settings, but can seem intimidating to the initiated. This workshop introduces the foundational electronics, cybernetics and computer science concepts critical to learning and making with Arduino. The Arduino IDE programming environment will be demystified and other environments better suited for children, including Ardublocks and Scratch, will be explored. Strategies for teaching with Arduino will be shared.



new tiny dingbatMaking and Learning in the Primary Years 

Young children are natural inventors, tinkerers, and makers. This workshop builds upon the natural inclinations of young children by adding new “technological colors” to their crayon box. littleBits, Scratch, Turtle Art, Makedo, Makey Makey, Hummingbird robotics kits, LEGO WeDo, soft circuits and more can all enrich the learning process. Timeless craft traditions and recycled junk combine with emerging technology to create a greater range, breadth, and depth of opportunities for learning by doing. Strategies for effective scaffolding, classroom organization, and the use of exciting new technologies in a developmentally appropriate fashion will be discussed. Participants in this workshop will learn how such modern knowledge construction projects are wholly consistent with the best early childhood traditions and support current standards. Dr. Stager is a certified preschool thru eighth grade teacher and an expert in the Reggio Emilia approach.

new tiny dingbatBuild and Program a Truly Personal Computer with the Raspberry Pi

The Raspberry Pi is a ultra low-cost Linux-based computer the size of a deck of playing cards that costs less than $40. It is capable of running open-source productivity software, like Open Office and Google Docs, plus programmed via Scratch, Turtle Art, or Python. You can even run Arduino microcontrollers, power a home-entertainment center, or run your own Minecraft server! Old USB keyboards. mice, TVs or monitors are recycled and repurposed to assemble your complete personal computer. Each participant in this workshop will setup, use, and program their Raspberry Pi in addition to discussing how it might be used across the curriculum. (materials fee applies)