An old colleague, Dr. Warren Buckleitner, has been reviewing children’s media products and toys for decades. He organizes industry events about the design of products for kids while maintaining a romantic optimism that the next great app is just around the corner. However, he often feels compelled to use Dr. Seymour Papert as a negative example to support a corporate community that Papert held in great repute. It’s a neat rhetorical trick, but Warren and I have discussed what I find to be a disrespectful view of Papert in the past. This morning, I awoke to find the Children’s Technology Exchange newsletter in my inbox. The latest issue dedicates a page to something Dr. Buckleitner calls “Seymour Syndrome.”

So, I decided to set the record straight by clearing up some confusion about issues raised in his essay. (I deleted the table of content links and all of the non-relevant content in the newsletter email below in order to respect the paywall and intellectual property rights. For more information, or to subscribe to his fine publications, go to http://reviews.childrenstech.com/)

Dear Warren,

Your latest discussion caught my eye. Aside from a persistent Papert animus and fondness for negative alliteration, your critique, “Seymour Syndrome” has some bugs in it.

  1. Papert’s lifework can hardly be reduced to the foreword in Mindstorms.
  2. Dr. Papert would dislike most of the crappy “products” you feel compelled to share with the world as much, if not more so than you do. (see Does Easy Do It? Children, Games and Learning)
  3. There is not a millimeter of daylight between Piaget and Papert. (see Papert on Piaget)
  4. Piaget’s work wasn’t about hands-on, it was focused on learning through concrete experiences. That’s not the same thing. (See The Conservation of Piaget: The Computer as Grist to the Constructivist Mill or even Ian’s Truck.)
  5. Papert was not Piaget’s student. Papert had earned two mathematics Ph.D.s by the time Piaget hired him as a collaborator.
  6. What is considered “getting kids to code” today is a denatured view of Papert’s vision about democratizing agency over computers.
  7. I’m not sure what a direction variable is, but 1) kids play games and sing songs using syntonic body geometry (like the turtle) from a very early age and 2) lots and lots of kids can use RIGHT and LEFT to learn directionality long before they’re eight or nine years-old.
  8. Papert’s “gear” story is a metaphor. His life’s work was dedicated to creating the conditions in which children could fall in love with powerful ideas naturally and with lots of materials, technologies, and experiences. His book, The Children’s Machine: Rethinking School in the Age of the Computer, discusses the importance of sharing learning stories.
  9. Papert wasn’t “led to Logo.” He, along with Wally Feurzig and Cynthia Solomon invented Logo. The fact that you’re still talking about it 50 years later points to at least its durability as an “object to think with.” (Here is a video conversation about Logo’s origins with two of its inventors.)
  10. Scratch can be considered Papert’s grandchild. I’m glad you like it.
  11. Most of the products you review make “exaggerated” claims about their educational properties. Why should this one be any different? Why blame Papert? (Dr. Papert wrote an entire book of advice for parents on avoiding such products and substituting creative activities instead. See The Connected Family – Bridging the Digital Generation Gap)
  12. The current CS4All, CSEdWeek, Hour-of-Code efforts are almost entirely “idea averse” (a great Papert term) and could really stand to learn a few things from Dr. Papert.

BTW: Thanks for your review of the CUE robot. It was helpful. Imagine if these toys had the extended play value of a programming language, like Logo? I’ve been using and learning with Logo for close to 40 years and have yet to tire of it. I sure wish you could have seen me teach Logo programming to 150 K-12 educators last week in Virginia. It was magnificent.

Happy holidays!

Gary

PS: I wonder why so many people feel so comfortable calling Dr./Professor Seymour Papert by his first name? Nobody calls Dewey, “John,” or Piaget, “Jean.”

On December 7, 2017 at 8:31 AM Children’s Technology Review wrote:

CTR Weekly – December 7, 2017
View this email in your browser
“Human relationships matter most.”  

 

 

RECOGNIZING SEYMOUR SYNDROME
See page 4 Recognizing “Seymour Syndrome”  Seymour Papert was a gifted individual. I mean no disrespect to his legacy by this article. I’ve seen how his ideas about children and coding have misled well-intentioned adults in the past.  Fast forward 40 years, and history is repeating itself. From reading Seymour Papert’s 1980 book, Mindstorms, we learn that he was fascinated by gears as a child. “Playing with gears became a favorite pastime. I loved rotating circular objects against one another in gearlike motions and, naturally, my first ‘erector set’ project was a crude gear system.” Papert wanted every child to have such mindstorms, which led him to Logo; an early programming language. Throughout the 1980s and early 1990s, many educators suffered from “Seymour Syndrome” — meaning an idealistic optimism that coding was the key to a better future. There was a rush to enroll children in coding camps. I know this because I was one of the teachers. I started calling all the hype “Seymour Syndrome” people trying to get young children to code, before they can understand what is going on. Today’s market has once again flooded with commercial coding-related apps, robots and games being sold with the promise that they can promote science, technology, engineering and math (STEM). Cubetto is one of these. The symptoms are in the marketing materials that name-drop Montessori, and claim that time with this rolling cube will  “teach a child to code before they can read.” Cubetto’s coding means finding six AA batteries and plotting out the course of a slow moving rolling cube on a grid. You do this by laying direction tiles on a progress line and pressing a transmit button.  I shudder to think that teachers are spending time attempting to “teach” children how to “code” thinking that this actually as something to do with “teaching” children how to “code” to fulfill a STEM objective. Students of child development know that preschool and early elementary age children learn best when they are actively involved with hands on, concrete materials. Papert’s teacher — Jean Piaget called the years from 3 to 7 “concrete operations” for a reason. The motions of the cube should be directly linked to the command, or better yet, the child should be in the maze, for a first-person point of view. ‘ Good pedagogy in the early years should be filled with building with blocks, playing at the water table filling and emptying containers, moving around (a lot) and testing language abilities on peers. If you want to use technology, get them an iPad and let them explore some responsive Sago Mini apps. Spend your $220 (the cost of a Cubetto) on several a low cost, durable RC vehicles that deliver a responsive, cause and effect challenge. Let the direction variables wait until the child is eight- or nine-years of age, when they can use a program like Scratch to build an entire program out of clusters of commands. As far as the “coding” part, save your pedagogical ammo for materials that match a child’s developmental level.

LITTLECLICKERS: PROJECTION MAPPING
Do you like to play with shadows? If so, you’ll love projection mapping. That’s when you use a computer projector to create a cool effect on a ceiling or building. Let’s learn some more.   1. What is projection mapping? According to http://projection-mapping.org/whatis/ you learn that it’s simply pointing a computer projector at something, to paint it with light. You can play a scary video on your house a Halloween, or make Santa’s sled move across your ceiling during a concert. The possibilities are endless. Visit the site, at www.littleclickers.com/projectionmapping


Website
YouTube
Facebook
Twitter

Subscribe to Children’s Technology Review for $60/year 

OBJECTIVE • AD FREE • COMPREHENSIVE REVIEWS OF CHILDREN’S TECHNOLOGY, SINCE 1993

This email message contains no sponsored content or purchase links. It is sent to paid subscribers of Children’s Technology Review. Please forward to a friend or a colleague, but only if you think they might become a paid subscriber.
WE APPRECIATE THE SUPPORT OF OUR WORK. 

Copyright © 2017 Children’s Technology Review, 126 Main Street, Flemington NJ 08822. All rights reserved.

Our email address is: info@childrenstech.com
To update subscription preferences by phone: 908-284-0404 (9 to 3 EST)

About the author

Veteran educator Dr. Gary Stager is co-author of Invent To Learn — Making, Tinkering, and Engineering in the Classroom and the founder of the Constructing Modern Knowledge summer institute. He is also the curator of the Seymour Papert archive site, The Daily Papert. Learn more about Gary here.

iste-charter

Dear Dr. Williams:

Thank you so much for being the first ISTE executive or board member to address the sad state of affairs expressed by my old friend and mentor David Thornburg. It is disappointing that David’s proposal was rejected. Dr. Thornburg is a pillar of educational computing.

I am grateful to David for bringing attention to ISTE’s non-existent response to the life and death of Seymour Papert. It is worth noting that the father of our field, Dr. Papert, was never invited to keynote ISTE or NECC; not after the publication of his three seminal books, not after the invention of robotics construction kits for children, not after 1:1 computing was borne in his image in Australia, not after Maine provided laptops statewide, not when One Laptop Per Child changed the world. This lack of grace implies a rejection of the ideas Papert advocated and the educators who had to fight even harder to bring them to life against the tacit hostility of our premiere membership organization.

One would imagine that a conference dedicated to linoleum installation would eventually have the inventor of linoleum to address its annual gathering. Last year (2015), ISTE rejected my proposal to lead a session commemorating the 35th anniversary of Papert’s book Mindstorms and the 45th anniversary of the paper he co-authored with Cynthia Solomon, “Twenty Things To Do with a Computer.” See the blog post I wrote at the time.

Such indifference was maddening, but the failure of the ISTE leadership to recognize the death of Dr. Papert this past July, even with a tweet, is frankly disgraceful. After Papert’s death, I was interviewed by NPR, the New York Times and countless other news outlets around the world. I was commissioned to write Papert’s official obituary for the prestigious international science journal Nature. Remarkably, unless I missed it, ISTE has failed to honor Dr. Papert in any way, shape, or form. I have begged your organization to do so in order to bring his powerful ideas to life for a new generation of educators. These actions should not be viewed as a grievance or form of attention seeking. ISTE’s respect for history and desire to provide a forum for the free exchange of disparate ideas are critical to its relevance and survival.

Dr. Papert himself might suggest that ISTE is idea averse. In its quest to feature new wares and checklists, it neglects to remind our community that we stand on the shoulders of giants. Earlier this year, I was successful in convincing NCWIT to honor Papert’s colleague, Dr. Cynthia Solomon, with its Pioneer Award. If only I could be so persuasive as to convince ISTE to honor the “mother of educational computing” before it’s too late. As we assert in our book, Invent To Learn, without Papert and Solomon there is no 1:1 computing, no Code.org, no CS4All, no school robotics, no maker movement.

In light of Papert’s recent passing, and the remarkable 50th anniversary of the Logo programming language in 2017, I submitted two relevant proposals for inclusion on the 2017 ISTE Conference Program.

You guessed it. Both were rejected.

Anniversaries and deaths are critical milestones. They cause us to, pause, reflect, and take stock. In 2017, there are several major conferences, including one I am organizing, focused on commemorating Papert and the 50th birthday of Logo. Sadly, ISTE seems to be standing on the sidelines.

It is not that I have nothing to offer on these subjects or do not know how to 1) write conference proposals or 2) fill an auditorium. As someone who has worked to bring Papert’s powerful ideas to life in classrooms around the world for 35 years and who worked with Papert for more than two decades, I have standing. I edited ISTE’s journal dedicated to the work he began, was the principal investigator on Papert’s last major institutional project, gave a TEDx talk in India on his contributions, and am the curator of the Seymour Papert archives at dailypapert.com. I worked in classrooms alongside Seymour Papert. Last year, 30 accepted ISTE presentations cited my work in their bibliographies.

logo-exchange-its-alive-cover

I am often asked why I don’t just give up on ISTE. The answer is because educational computing is my life’s work. I signed the ISTE charter and have spoken at 30 NECC/ISTE Conferences. It is quite possible that no one has presented more sessions than I. For several years, I was editor of ISTE’s Logo Exchange journal and founded ISTE’s SIGLogo before it was killed by the organization. I have been a critical friend for 25 years, not to harm ISTE, but to help it live up to its potential.

For decades, David Thornburg and I have spoken at ISTE/NECC at our own expense. This is just one way in which I know that we are both committed to what ISTE can and should be. I have also written for ISTE’s Learning and Leading with Technology.

It would be my pleasure to discuss constructive ways to move forward.

Happy holidays,

Gary

Gary S. Stager, Ph.D.
CEO: Constructing Modern Knowledge
Co-author: Invent To Learn – Making, Tinkering, and Engineering in the Classroom

PS: Might I humbly suggest that ISTE hire or appoint a historian?

Following my presentation at the March ASCD National Conference, Sarah McKibben of ASCD interviewed me for an article, If You Build It: Tinkering with the Maker Mind-Set, published in the June 2014 issue of ASCD Education Update.

As is often the case, just a few of my comments made it into the final publication. Since I responded to a number of interview questions via email, I am publishing my full interview here.  The questions posed are in green.

How would you define making? I talked to Steve Davee at the Maker Education Initiative, and he says that making is more of a mind-set. “Where things that are created by people are recognized, celebrated, and there’s a common interdisciplinary thread.”  Would you agree?

I like to say that the best makerspace is between your ears. I agree that it’s a stance that prepares learners to solve problems their teachers could never have predicted with a strong sense of confidence and competence, even if only to discover that there is much more to learn.

Seymour Papert calls the learning theory underlying the current interest in “making,” constructionism. He asserts that learn best occurs when the learner is engaged in the process of constructing something shareable.

In our book, we argue that my friend and mentor Papert, is the father the maker movement as well as educational computing.

In a webinar on your website, Sylvia Martinez said that with making, assessment is intrinsic within the materials.” That it’s more “organic, formative, and internally motivated.” If you’re working with a material like cardboard, without any technology involved (and you can’t base success on something lighting up), how do you assess learning?

First of all, it would be best to take a deep breath and not worry about assessing everything. All assessment interrupts the learning process. Even just asking, “Hey, whatcha doing?” interrupts the learning process. It is up to reasonable adults to determine an acceptable degree of interruption. Perhaps building stuff out of cardboard is just fun.

The best problems and projects push up against the persistence of reality. One could observe a student’s habits of mind. Speak with them about her goals and what she has accomplished. One could imagine thinking about the understanding of physics involved in building a structure, understanding of history in their cardboard Trojan horse, or storytelling ability.

There isn’t anything magical about technology when it comes to a teacher understanding the thinking of each student. That said, we find over and over again that in productive learning environments, kids may combine media, like cardboard, lights, and microcontrollers in interesting and unpredictable ways. The computer is part of an expansive continuum of constructive material.

It seems that there’s a wide gamut of materials in making. From cardboard to Arduinos to expensive laser cutters. You mentioned in a presentation, something about “low threshold, high-ceiling materials.” Can you describe what you mean?

Sure, Tinkering and engineering requires a dialogue with materials in which it is possible for young or inexperienced users to enjoy immediate feedback so they continue to grow as fluency increases. Think of paint and brushes in that context or programming languages, such as Scratch or MicroWorlds. Like with LEGO, simple elements or tools may be used to create infinite complexity and expressiveness.

Can you give me an example of how, for instance, a high school English teacher might bring making into the classroom?

Making real things that matter with a real potential audience. Kids should write plays, poems, newspaper articles, petitions, manuals, plus make films, compose music, etc…  We need to stop forcing kids to make PowerPoint presentations on topics they don’t care about for audiences they will never encounter. Kids have stories to tell. They should act, write, sing, dance, film those stories AND learn to write the sort of scientific, technical and persuasive writing that nearly every career demands.

At our Constructing Modern Knowledge summer institute, middle school humanities teacher, Kate Tabor of Chicago, used MicroWorlds to “make” the computer generate random Elizabethan insults. Teachers have used versions of Logo for decades to explore grammatical structure and conjugation rules by writing computer programs to generate random poetry or create the plural possessive form of a word.

Steve Davee also mentioned that a key to successful making in schools is to empower students to become the experts–to learn how to use a 3d printer on their own, for example, and to share that knowledge with others. He said that when a teacher has to be involved with a technology or material, it creates a “creative bottleneck.” On the other hand, you’ve mentioned that teachers need to tap into their own expertise to guide students. Can these two approaches coexist peacefully?

Kids are competent. I believe that teachers are competent too. I find it unfortunate that so many educators behave as if teachers are incapable of adapting to modernity.

There is a fundamental difference in stance between assuming that as a teacher I know everything as a fountain of knowledge and that the kids are smarter than me. There may be a “creative bottleneck,” but giving up on teachers or schools is an unacceptable capitulation.

Great things are possible when the teacher gets out of the way, but even greater possibilities exist when the teacher is knowledgeable and has experience they can call upon to help a kid solve a tough problem, connect with an expert, or toss in a well-timed obstacle that will cause the student encounter a powerful idea at just the right teachable moment.

Each year, teachers at Constructing Modern Knowledge construct projects that two years ago would have earned them a TED Talk and five years ago, a Ph.D. in engineering, and yet so much teacher PD is focused on compliance, textbook page turning or learning to “use the Google.”

How does making align with Piaget’s understanding, as you’ve mentioned, that knowledge is a consequence of experience?

Piaget said that knowledge is a consequence of experience. Papert said, “If you can make things with computers, then you can make a lot more interesting things and you can learn more by making them.” Both ideas serve as strong justification for making.

In a webinar, Sylvia Martinez mentioned that instead of looking at standards and creating projects around them, teachers might work backward by creating an educational experience, then filling in the standards. Do you agree with this approach? How would this look with making?

I agree with Papert that at best school teaches a billionth of a percent of the knowledge in the universe yet our entire educational system is hell-bent on arguing endlessly over which 1 billionth of a percent is important. As an educator, my primary responsibility is create a productive context for learning that democratizes access to experience and expertise while doing everything I can to make private thinking public in order to ready the environment for the student’s next intellectual development. Making is wholly consistent with this view.

As we have mechanized and standardized teaching over the past generation, teachers have been deprived of experience in thinking about thinking. Their agency has been robbed by scripted curricula, test-prep, the Common Core, and other nonsense I believe to be on the wrong side of history. As a result, they can’t help but become less thoughtful in their practice. My work is concerned with creating experiences during which teachers become reacquainted with learning in order to become more sensitive to the individual needs, passions, talents, and expertise of each student. The emerging tools of the Maker Movement provide an exciting basis for such experiences.

As I said at ASCD, you can’t teach 21st Century learners, if you haven’t learned this century.

The future viability of public education is dependent on a system of creative competent educators trusted to provide rich learning experiences for children.

A boyhood dream has come true. I was interviewed by California School Business Magazine!

I certainly sized the opportunity to pull no punches. I left no myth behind.  Perhaps a few school business administrators will think differently about some of their decisions in the future.

A PDF of the article is linked below. I hope you enjoy the interview and share it widely!

Edtech Expert Discusses the Revolution in Computing