I hope that anyone reading this is healthy and sane during this period of uncertainty. Teachers and kids alike are grieving over the loss of freedom, social interactions, and normalcy. Many families, even those never before considered at-risk, are terrified of the potential for financial ruin or catastrophic health risks. Since I’m all about the love and spreading optimism, I humbly share a silver-lining for teachers and the kids that they serve.

The fact that you are being told to “teach online” in some vague version of “look busy” may mean that teachers are finally being trusted. Districts large and small are abandoning grading as they recognize that education (at home) is inequitable. I guess it’s better late than never to discover the obvious.

Parents and superintendents are vanquishing the needless infliction of nonsense known as homework. Standardized testing is being canceled, an actual miracle. Colleges have recognized that enrolling students next Fall is more important than SAT or ACT scores. Each of these emergency measures has been advocated by sentient educators forever.

So, there is reason to celebrate (briefly), but then you must act! Use this time to remake schooling in a way that’s more humane, creative, meaningful, and learner-centered. This is your moment!

In the absence of compelling models of what’s possible, the forces of darkness will fill the void. Each of us needs to create models of possibility.

The fact that kids’ days are now unencumbered by school could mean that they finally have adequate time to work on projects that matter rather than being interrupted every 23 minutes. I recently wrote, What’s Your Hurry?, about teaching computer programming, but it’s applicable to other disciplines.

Project-based learning offers a context for learner-centered pedagogy. I was reminded that the new edition of our book, “Invent To Learn – Making, Tinkering, and Engineering in the Classroom,” includes several chapters on effective prompt setting that may be useful in designing projects for kids at home. Invent To Learn also lays out the case for learning-by-doing. Use that information to guide your communication with administrators, parents, and the community.

The following are but a few suggestions for seizing the moment and reinventing education after this crisis is resolved so we may all return to a new, better, normal.

Practice “Less us, more them”

Anytime a teacher feels the impulse to intervene in an educational transaction, it is worth pausing, taking a breath, and asking, “Is there less that I can do and more that the student(s) can do?” The more agency shifted to the student, the more they will learn.

One exercise you can practice teaching online, as well as face-to-face, is talk less. If you typically lecture for 40 minutes, try 20. If you talk for 20 minutes, try 10. If you talk for 10, try 5. In my experience, there is rarely an instance in which a minute or two of instruction is insufficient before asking students to do something. While teaching online, try not to present content, but rather stimulate discussion or organize activities to maximize student participation. Piaget reminds us that “knowledge is a consequence of experience.”

Remember, less is more

My colleague Brian Harvey once said, “The key to school reform is throw out half the curriculum – any half.” This is wise advice during sudden shift to online teaching and the chaos caused by the interruption of the school year.

Focus on the big ideas. Make connections between topics and employ multiple skills simultaneously. Abandon the compulsion to “deliver” a morbidly obese curriculum. Simplify. Edit. Curate.

Launch students into open-ended learning adventures

Learning adventures are a technique I became known for when I began teaching online in the 1990s. This process is described in the 2008 paper, Learning Adventures: A new approach for transforming real and virtual classroom environments.

Inspire kids to read entire books

Since the bowdlerized and abridged basals are locked in school, encourage kids to luxuriate with real books! Imagine if kids had the freedom to select texts that interest them and to read them from cover-to-cover without a comprehension quiz or vocabulary lesson interrupting every paragraph! Suggest that kids post reviews on Amazon.com for an authentic audience rather than making a mobile or writing a five-paragraph essay. Use Amazon.com or Goodreads to find other books you might enjoy.

Tackle a new piece of software

Been meaning to learn Final Cut X, Lightroom, a new programming language, or any other piece of sophisticated software? Employ groups of kids to tackle the software alone or together and employ their knowledge once school returns. Let them share what they know and lead.

Contribute to something larger than yourself

This is the time for teachers to support kids in creating big creative projects. Write a newspaper, novel, poetry anthology, play, cookbook, or joke book. Make a movie and then make it better. Create a virtual museum. Share your work, engage in peer editing, and share to a potentially infinite audience.

Check out what Berklee College of Music students have already done!

Teach like you know better

Use this time to rev-up or revive sound pedagogical practices like genre study, author study, process writing, interdisciplinary projects and the other educative good stuff too often sacrificed due to a lack of sufficient time. You now have the time to teach well.

Take note of current events

Daily life offers a world of inspiration and learning invitations. Why not engage kids in developmentally appropriate current events or take advantage of opportunities like JSTOR being open to the public during the COVID-19 crisis? Here’s a possible student prompt.

“Go to JSTOR, figure out how it works, find an interesting article, and share what you learned with the class.”

Let Grow

Change the world by challenging students to learn something on their own by embracing the simple, yet profound, Let Grow school project. A simple assignment asks kids to do something on their own with their parent’s permission and share their experiences with their peers.

Stand on the shoulders of giants

Every problem in education has been solved and every imaginable idea has been implemented somewhere. Teachers should use this time to read books about education written by experts and learn the lessons of the masters.

Take time to enjoy some culture

There is no excuse to miss out on all of the cultural activities being shared online from free Shakespeare from the Globe Theatre, Broadway shows, operas, living room concerts, piano practice with Chick Corea, and exciting multimedia collaborations. Many of these streams are archived on social media, YouTube, or the Web. Bring some peace, beauty, and serenity into your home.

The following are some links, albeit incomplete and subjective, to free streaming cultural events.

Apprentice with the world’s greatest living mathematician

In A Personal Road to Reinventing Mathematics Education, I wrote about how I have been fortunate enough to know and spend time with some of the world’s most prominent mathematicians and that while not a single one of them ever made me feel stupid, plenty of math teachers did. Stephen Wolfram is arguably the world’s leading mathematician/scientist/computer scientist. Over the past few years, he has become interested in teachers, kids, and math education. Dr. Wolfram spoke at Constructing Modern Knowledge, runs an annual summer camp for high school mathematicians, and has made many of his company’s remarkable computational tools available for learners.

Acknowledging that many students are home do to the pandemic this week, Wolfram led a free online Ask Me Anything session about an array of math and science topics, ostensibly for kids, as well as a “follow-along” computation workshop. You, your children, or your students have unprecedented access to all sorts of expertise, just a click away! This is like Albert Einstein making house calls!

A bit of exploration will undoubtedly uncover experts in other disciplines sharing their knowledge and talents online as well.

Abandon hysterical internet policies

The immediate need for laptops, Internet access, student email, plus the expedient use of available technologies like YouTube, FaceTime, Skype, Twitter, Instagram, and Zoom has instantly dispelled the hysterical and paranoid centralized approach to the Internet schools have labored under for the past twenty-five years. The Internet has never been dependent on the policies of your school or your paraprofessional IT staff to succeed. Perhaps we will learn what digital citizenship actually looks like after teachers and children are treated like modern citizens.

Heed Seymour Papert’s advice

When I worked with Seymour Papert, he created a document titled, “Eight Big Ideas Behind the Constructionist Learning Lab.” This one sheet of paper challenges educators to create productive contexts for learning in the 21st Century. Can you aspire to make these recommendations a reality in your classroom(s)?

Do twenty things to do with a computer

In 1971, Seymour Papert and Cynthia Solomon published, Twenty Things to Do with a Computer. How does your school measure up a half-century later?

Program your own Gameboy

Yes, you read that correctly. Here is everything you need to know to write your own computer games, build an arcade, or program a handheld gaming device!

Teach reading and programming simultaneously

Upper elementary and middle school students could learn to program in Scratch and develop their reading fluency at the same time. Learn how in A Modest Proposal.

Share my sense of optimism

Shortly before the COVID-19 crisis, I published, Time for Optimism, in which I shared reasons why progressive education is on the march and how we might teach accordingly. We can do this!

Wash your hands! Stay inside! Stand with children!


Veteran educator Dr. Gary Stager is co-author of Invent To Learn — Making, Tinkering, and Engineering in the Classroom and the founder of the Constructing Modern Knowledge summer institute. He led professional development in the world’s first 1:1 laptop schools and designed one of the oldest online graduate school programs. Learn more about Gary.

New Trends, New Learning Opportunities

As we approach the new millenium, technology – and its use in schools – continues to evolve
© 1998 Gary S. Stager
Published in Upgrade, The Magazine of the Software Publisher’s Association

As the cost of computing decreases rapidly, children continue to enjoy increasing access to computers and the Internet . However, lower cost is not the only trend in learning with computers and communications technology. A few of the trends may seem quite obvious. Others are more provocative and will change the nature of teaching, learning and software development. The trends include:

  1. Lower cost hardware and software
  2. The locus of technological innovation shifting from school to home
  3. The Internet
  4. A sea-change from software predicated on passive instruction and entertainment to an expectation to use computers as vehicles for intellectual construction
  5. Miniaturization/Mobility

Many of these trends are interdependent and support one another. The overlap reinforces the changes taking place.

Lower cost hardware and software

Moore’s Law continues to hold and the educational promise of the Internet has caused millions of new computers to be purchased by families, while schools rush to “get wired.” There is an enormous demand for sub-$1,000 computers and the success of Apple’s iMac provide evidence of the increasing availability of low-cost, powerful, “Internet-ready” computers. The couple of years will see computers approach the price of a few pairs of Air Jordans.

This phenomena will cause more homes to own personal computers and allow for more telecommuting and learning outside of school than has been possible in the past. Schools will find that the level of access demanded by students, coupled with reduction in cost of computing will have a profound impact on the nature of teaching and learning. At the simplest level, ubiquitous computing will move computers out of specialized labs and in contact with every aspect of schooling.

Equity will improve as the cost of computer ownership drops. Several studies already conclude that socioeconomic status no longer determines a child’s level of computer literacy – at least the modest level desired by traditional school computing curricula.

Increased access to powerful, less expensive technology is also creating new ways of learning and expressing oneself. MIDI keyboards and software allow fifth graders to compose and perform original musicals while $50 drawing tablets and digital cameras provide children with new palettes for expressing their artistic talents. Such technology is welcome news in an age where art and music education is in serious jeopardy.

Challenges to the profitability of the software industry

One concern for software developers is the public’s demand for products with higher production values at lower prices. Many customers no longer perceive the value of software priced at $499, but they don’t understand why it costs forty-nine dollars when a home video of Titanic costs $9.95.

Whether due to high-volume licensing or the availability of increasingly powerful shareware/freeware on the web, the price of software increasingly approaches zero.

The home

Increasing access to powerful computers, expressive software and the Internet has shifted the locus of technological innovation from school to the home. There is no way for schools to catch-up. They are likely to have less powerful computers and connectivity than some of their students have at home. This presents educators with a challenge and opportunity to view the home more as a learning resource than a place where kids do trivial homework assignments and stop learning until they return to school.

While parents will continue to purchase software designed to drill their children in specific skills, kids are likely to ignore these tasks in favor of controlling the computer to achieve more personal and complex objectives. Just as shooting down math problems are less interesting to kids than “surfing or chatting,” making things to share with the world will consume more computer time.

The net

Much has been said about how the Internet offers learners of all ages with unprecedented access to information. This fact alone has revolutionized learning, however the greatest impact of the net lies in its ability to democratize publishing and expand opportunities for collaboration.

While schools assimilate the Internet by using it as a way to find discrete facts or deliver information to sometimes unwilling students, kids at home are beginning to use their personal computers to create web sites, collaborate in online communities of practice and express themselves in new ways. This should come as no surprise as schools struggle against the clock, irrational fear of Internet abduction and the institutional expense of providing students with sufficient access. The home provides learners with a level of freedom, contemplative time and computer access necessary to construct knowledge.

Even when schools begin to discuss online learning, the reflexive response is to scan everything they have ever used in a traditional classroom in preparation for “pouring the information down the pipe” and into the computer of the online students. A “push” mentality permeates the discussion, rather than viewing learning as the act of “pulling and shaping understanding” in the mind of each individual learner. You can lead a school to the I-Way, but you can’t make it think.

The Concord Consortium (http://www.concord.org) is dedicated to creating rich online environments for learning math and science by doing. Their collaborative projects include Haze-Span, a project in which children are collecting and analyzing important scientific data and sharing that data with interested scientists, and the Virtual High School in which students explore areas of mathematics and science in ways beyond the school curriculum.

Pepperdine University (http://gsep.pepperdine.edu/online/) is perhaps the first university to offer accredited online graduate programs in educational technology, based on constructionist principles of learning. Educators enrolled in the Pepperdine master’s and doctoral programs use a combination of synchronous and asynchronous technologies to build community and construct knowledge within a personal context. Guest speakers, faculty members and even other classes of students join discussions of powerful ideas in virtual settings in which every member of the community is a learner. Access to classmates and faculty members is available virtually around the clock. Pepperdine is working to invent the future of learning and teaching without relying on an old correspondence school model.

Mamamedia (http://www.mamamedia.com) is a unique Internet start-up designed to provide children with a safe, creative and intellectually stimulating place on the web. Mamamedia extends the traditional notion of the 3-Rs, by adding the three Xs, “Exploration, Expression and Exchange” as the design philosophy of their site. Mamamedia founder Idit Harel’s goal is to “sell learning to kids” in an environment they will wish to return to over and over again. Anything children can use may also be collected, created or manipulated by the child. The future development of the net has to not only include faster bit delivery, but greater opportunities for users to construct things online.

Educast (http://www.educast.com/) provides educators with a free screensaver that is updated with timely news, views, resources and teaching ideas based on a push technology similar to Point-Cast. The system is optimized to make the best of slow or infrequent net connections.

Every Internet user is depending on software and hardware engineers to increase bandwidth and more intuitive tools for web publishing. Web design still requires too much “monkey work” and “two percent” of users understand the process of uploading a page to a web server.

Learners of all ages have the unprecedented opportunity to not only “look things up,” but use the Internet to publish their ideas in all sorts of ways – from dancing poetry, special-interest groups and TV/radio broadcasts. The web is full of places where you can publish your work for free and powerful tools for expressing your ideas. As the courts and educators are discovering, school know longer has sole jurisdiction over what goes on in a kids’ bedroom, personal computer or head. For an increasing number of kids, “high-tech means my tech.” (Idit Harel)

From passive to constructive computing

Recent research demonstrates that computer use is most effective for learning when students use it to “problem solve.” Inside and outside of school, the thing computers do best is provide learners with an intellectual laboratory and vehicle for self expression. Children need better, more open-ended, computationally rich tools than their parents in order to sustain their interest and leverage the potential of computers for making connections between powerful ideas.

Five year-olds ought to be able to see themselves as software developers by using MicroWorlds to design a video game. Children should be able to collect data, perform experiments and discuss their conclusions with other children and experts. Kids who build and program LEGO robots may use physics, measurement, feedback and perhaps even calculus in a meaningful context. Seymour Papert and others point out that children who have had such deep learning experiences will demand much more of school.

Miniaturization and mobility

Computers are not only getting cheaper and more powerful, they are getting smaller. I have enjoyed working with Australian schools in which every child has a laptop for more than eight years. Approximately 50,000 Australian children have had personal laptop computers and the number of American school districts embracing truly personal computing is growing as well. The Australian pioneers viewed laptops as a way to make learning more personal and as a catalyst with which teachers could rethink the nature of teaching and learning. The ability to use the computer as your own portable laboratory and studio has had a tremendous impact on the social, cognitive and artistic development of children. Learning can not only occur anytime and anywhere, but new deeper forms of learning have become possible.

Students with laptops need two essentially two pieces of software, an integrated package for doing work and environment for messing about with powerful ideas and learning. This is why so many schools use ClarisWorks or Office for writing, calculating and publishing and MicroWorlds (http://www.microworlds.com) for designing interactive multimedia projects that may be run over the web. The software requirements for laptop schools include: being open-ended, non-grade specific, inexpensive and have a life-span of at least three years. Developers need to begin thinking about how they will distribute and license software to schools in which every student has a personal laptop.

High schools have been embracing low-cost graphing calculators for several years. These devices cost less than one hundred dollars and have been used to help students visualize mathematics that was previously abstract. A new innovation, calculator-based labs (CBL), allows students to connect scientific probes to the graphing calculator and collect experimental data. This data may then be analyzed and shared in ways never before possible. These probes place students in the center of their own learning and enriches mathematics education by making tangible connections to science.

Nicholas Negroponte once joked that we need to “melt crayolas down into Crays.” He meant that toys would become more and more computationally rich. The recent Tamagotchi craze offered creative teachers with a tool for connecting student toys to curriculum topics like: senses, life-cycle, probability and artificial life. New twelve dollar HotWheels cars have computers in them capable of measuring velocity and distance traveled. Perhaps the most exciting new product is the LEGO Mindstorms programmable brick set that allows children to construct autonomous robots of their own design.

These trends provide parents, educators, developers and children to enter into a new discussion of the nature of learning. If we trust the natural learning inclinations of children, provide them with rich open-ended tools and don’t do too much to get in their way, we will witness an explosion of learning in the very near future.

Gary S. Stager is a contributing editor for Curriculum Administrator Magazine and editor-in-chief of Logo Exchange. He has consulted with LEGO, Disney, LCSI, Compaq, Tom Snyder Productions, Netschools, Universal Studios and Microsoft. Gary is an adjunct professor of education at Pepperdine University, a frequent speaker at conferences and has spent the past seventeen years helping educators around the world find constructive ways to use computers to enhance the learning process. Gary may be reached at http://www.stager.org.