Checking-in on teachers working on a robotics project during an Invent To Learn workshop

A reporter for an Australian education magazine recently sent
interview questions about robotics in education, including the obligatory question about AI. The final article, when it runs, only grabs a few of my statements mixed in amongst the thoughts of others. So, here is the interview in its entirety. Of late, I have decided to answer all reporter questions as if they are earnest and thoughtful. Enjoy!

Q: With the current focus on STEM, and the increasing need to engage students in hands-on STEM learning, what sort of potential exists for the teaching of robotics in the classroom?

GS: Piaget teaches us that “knowledge is a consequence of experience.” If we believe that learning by doing is powerful, learning-by-making concretizes and situates powerful ideas. Robotics is one such medium for learning-by-making in a fashion that combines the actual use of concepts traditionally taught superficially or not at all.

In a learner-centered context, robotics adds colors to the crayon box. If in the recent past, seven year-olds made dinosaurs out of cereal boxes, now their cereal box dinosaurs can sing, dance, or send a text message to their grandmother, as long as state law still allows dinosaurs to use cellphones in schools.

Reggio Children’s Carla Rinaldi working with Aussie educators Prue & Stephanie at Constructing Modern Knowledge

Q: How important has robotics become in preparing students for the jobs of the future?

GS: Less than learning to play the cello, love theatre, or understand the importance of Thelonious Monk, the labor movement, or women’s history in a contemporary democracy.

A scene from one of my family workshops (click to zoom)

Q: Do you think skills such as coding and programming will become just as important as learning Math and English in coming years?

GS: Such questions reveal how powerful ideas are often reduced to fads and buzzwords in a zero-sum notion of schooling. While it surely the case that any new idea introduced in schools runs the risk of stealing time and attention from something else, robotics is an interdisciplinary medium for expression, like drawing, painting, writing, composing

If our goals were as modest as to increase understanding of the decontextualized and often irrelevant nonsense found in the existing Math curriculum, kids would learn to program and engage in physical computing projects. The only context for using and therefore understanding many Math concepts is in computing activities. Absolute value on paper is a useless piece of vocabulary. If you are trying to design a robot to navigate an unfamiliar terrain or get your rocket ship to land on a planet in the video game you programmed, a working understanding of absolute value comes in quite handy.

For much of my generation, DNA is three letters representing three words I can neither remember or pronounce, plus that squiggly thing I don’t understand. Advances in technology now make it possible for year seven kids to manipulate DNA. I bet those kids will have a different relationship with genetics than previous generations.

Q: What sort of an impact does teaching the fundamentals of robotics have when it comes to possible career pathways for students?

GS: I don’t know and I do not trust anyone who claims to know the future of employment. Schools make a terrible mistake when they see their purpose as vocational in nature. The sorting of kids into winners and losers with career pathways determined by some artificial school assessment should be relegated to the dustbin of history. How well did the Hawke Government do at predicting the impact of social media? Schools should prepare children to solve problems that none of their teachers ever anticipated. Schools should do everything possible to create the conditions in which children can become good at something, while gaining a sense of what greatness in that domain might look like. The “something” is irrelevant. Currently, academic success has little to do with the development of expertise.

I have three adult university educated children. The only one to live on her own, with employment, and health insurance since the minute she graduated, was the art major. She enjoyed a fabulous well-rounded liberal arts education.

Q: Do you think schools are typically placing enough of an emphasis on robotics, coding, programming and artificial intelligence? Or do we still have a long way to go in embracing this technology in schools, particularly in Australia?

GS: In a wealthy nation like Australia (or the United States), every child should have their own personal multimedia laptop computer (30 years after Australia pioneered 1:1 computing) and they should learn to program that computer and control external devices not because it might lead to a job someday, but because programming and physical computing (a term preferable to robotics) are ways of gaining agency over an increasingly complex and technologically sophisticated world.

Programming and robotics answer the question Seymour Papert began asking more than fifty years ago, “Does the computer program the child, or the child program the computer.” In an age of rising authoritarianism and “fake news,” learner agency is of paramount importance.

The first schools in the world where every kid owned a personal portable computer, used them for programming and robotics was in Australia!

Coding and programming are the same thing. As a proponent of high-quality educational experiences, I recommend programming and robotics as incubators of powerful ideas. AI largely remains science fiction. Its contemporary uses in education are dystopian in nature and should be rejected.

A scene from one of my family workshops

Q: When it comes to the teaching of STEM in schools, and particularly robotics, how well do you think Australia is placed compared to other countries? And, are our schools doing enough to prepare students for future jobs?

GS: International education comparisons are immoral and needlessly based on scarcity. In order for Australian students to succeed, it is unnecessary for children in New Zealand to fail. Competition in education always has deleterious effects.

A scene from one of my family workshops

Q: Do you think enough is being done in educating our future teachers about the importance of STEM and robotics during their tertiary education?

GS: No. The art of teaching and everything but curriculum delivery and animal control has been sadly removed from teacher preparation. Teachers taught in a progressive tradition see robotics as mere stuff and use it with ease and without specialised instruction.

Q: What are some of the steps schools can take to upskill their teachers in robotics? And how important is it to ensure teachers are appropriately skilled in teaching robotics?


  • Stop viewing robotics narrowly through the lens of robotics competitions where one rich school builds a truck to kill another rich school’s truck. Competition also has a prophylactic impact on the participation of girls.
  • Expand your notion of robotics more broadly as physical computing and see the whimsical, playful, beautiful projects shared in our book, Invent To Learn,this library of project videos (, the Birdbrain technologies video library (, and the work being done with the micro:bit around the world
  • Most importantly, schools need to embrace project-based learning, not as the pudding you get after suffering through a semester of instruction, but as the primary educational diet. Once that occurs, the power of robotics/physical computing as a vehicle for personal expression becomes self evident.

A scene from one of my family workshops (click to zoom)

Q: What are some of the ways teachers can incorporate robotics into the Australian Digital Technologies Curriculum?

GS: By doing something. There are remarkable new materials available like the Hummingbird Bit Robotics Kits, ( but schools have now had access to kid-friendly robotics kits from LEGO since 1987.

I also recommend placing teachers and parents in meaningful hands-on experiences such as my family workshops described at, or the Constructing Modern Knowledge institute.

A scene from one of my family workshops (click to zoom)

Q: In coming years, how much of an emphasis do you think will be placed on robotics education in schools?

GS: Fads fizzle. One’s ability to control computational devices will only increase in importance.

Q: Is there anything else you’d like to comment on?

GS: The voluptuous Australian national curriculum in design and technology should be replaced by Seymour Papert and Cynthia Solomon’s pithy 1971 paper, “Twenty Things to Do with a Computer.”

Gary S. Stager, an award-winning teacher educator, speaker, consultant and author who is an expert at helping educators prepare students for an uncertain future by super charging learner-centered traditions with modern materials and technology. He is considered one of the world’s leading authorities on learning-by-doing, robotics, computer programming and the maker movement in classrooms. Dr. Gary Stager is co-author of Invent To Learn — Making, Tinkering, and Engineering in the Classroom and the founder of the Constructing Modern Knowledge summer institute. He led professional development in the world’s first 1:1 laptop schools and designed one of the first online graduate school programs. Learn more about Gary here.

Two-Day Seminars with Will Richardson in October 2019 in DC, NJ, & Boston – Register today!

In Chapter Four of our new book, Invent to Learn – Making, Tinkering, and Engineering in the Classroom, we discuss the importance of prompt setting as a basis for project-based learning. I argue that “a good prompt is worth 1,000 words.” Projects are not the occasional dessert you get as a reward after consuming a semester’s worth of asparagus, but that the project should be a teacher’s “smallest unit of concern.

Last week, Sylvia Martinez and I completed a successful four-city Texas Invent to Learn workshop tour. Each workshop featured an open-ended engineering challenge. This challenge, completed in under two hours, was designed not only to introduce making, engineering, tinkering, and programming to educators with diverse experience, but to model non-coercive, constructionist, project-based learning.

Presented with what we hope was a good prompt, great materials, “sufficient” time, and a supportive culture, including a range of expertise, the assembled educators would be able to invent and learn in ways that exceeded their expectations. (We used two of our favorite materials: the Hummingbird Bit Robotics Kit and Snap! programming language.)

A good time was had by all. Workshop participants created wondrous and whimsical inventions satisfying their interpretation of our prompt. In each workshop a great deal was accomplished and learned without any formal instruction or laborious design process.

What’s your point?
Earlier today, our friends at Birdbrain Technologies, manufacturers of the Hummingbird Bit Robotics Kit, tweeted one of the project videos from our Austin workshop. (Workshop participants often proudly share their creations on social media, not unlike kids. Such sharing causes me to invent new workshop prompts on a regular basis so that they remain a surprise in subsequent events.)

This lovely video was shared for all of the right reasons. It was viewed lots of times (and counting). Many educators liked or retweeted it, All good!

What’s slightly more problematic is the statement of the prompt inspiring this creation.

“Problem: The Easter Bunny is sick. Design a robot to deliver eggs.”

That was not the exact prompt presented to our workshop participants. This slight difference makes all the difference in the world.

The slide used to launch the invention process

Aren’t you just nitpicking?
Why quarrel over such subtle differences in wording?

  • Words matter
  • My prompt was an invitation to embark on a playful learning adventure complete with various sizes of candy eggs and a seasonal theme. Posing the activity as a problem/solution raises the stakes needlessly and implies assessment.
  • Design a robot comes with all sorts of baggage and limits the possible range of approaches. (I just rejected the word, solutions, and chose approaches because words matter.)

People have preconceived notions of robots (good and bad). Even if we are using a material called a robotics kit, I never want children to cloud their thinking with conventional images of robots.

The verb, design, is also problematic. It implies a front-loaded process involving formal planning, audience, pain point, etc… good in some problem solving contexts, but far from universally beneficial.

The use of problem, design, and robot needlessly narrows and constrains the affective, creative, and intellectual potential of the experience.

A major objective of professional learning activities such as these is for educators to experience what learning-by-doing may accomplish. Diving in, engaging in conversation with the materials, collaborating with others, and profiting from generative design (a topic for future writing) leads all learners to experience success, even in the short time allotted for this activity. Such a process respects what Papert and Turkle called epistemological pluralism. Hopefully, such positive personal experiences inspire future exploration, tinkering, and learning long after the workshop ends.

Our book suggests that good prompts are comprised of three factors:

  • Brevity
  • Ambiguity
  • Immunity to assessment

Such prompt-setting skill develops over time and with practice. Whether teaching preschoolers or adults, I am sensitive to planting the smallest seed possible to generate the most beautiful garden with the healthiest flowers. That glorious garden is free of litter from brainstorming Post-It Notes, imagination crushing rubrics, and other trappings of instruction.

Martinez, S. L., & Stager, G. (2019). Invent to learn: Making, Tinkering, and Engineering in the Classroom, second edition (2 ed.): Torrance, CA: Constructing Modern Knowledge Press

Turkle, S., & Papert, S. (1992). Epistemological Pluralism and the Revaluation of the Concrete. Journal of Mathematical Behavior, 11(1), 3-33.

Veteran educator Dr. Gary Stager is co-author of Invent To Learn — Making, Tinkering, and Engineering in the Classroom and the founder of the Constructing Modern Knowledge summer institute. He led professional development in the world’s first 1:1 laptop schools and designed one of the oldest online graduate school programs. Learn more about Gary here.


Buy the book!

Look at what preK-6 Mexican teachers did in my recent PBL 360 workshop in Guadalajara. This was their first experience with engineering, physical computing, and programming. They designed, created, and programmed these “birds” in less than two hours with the Hummingbird Robotics Kit and SNAP!

The prompt was simple…

“Make a Bird. Singing and dancing is appreciated.”

There was no instruction. The entire project was completed in under two hours – roughly the equivalent of two class periods.

My work continues to demonstrate the limits of instruction, the power of construction, and the Piagetian notion that “knowledge is a consequence of experience.” There is simply no substitute for experience. Constructive technology and computing amplify human potential and expand the range, breadth, and depth of possible projects. This is critical since the project should be the smallest unit of concern for educators.

Look at these short video clips sharing the teachers’ projects and compare what is possible during an educator’s first or second computing experience with the unimaginative and pedestrian “technology” professional development typically offered. We need to raise our standards substantially.

“You cannot behave as if children are competent if you behave as if teachers are incompetent.” – Gary Stager

The following videos are unedited clips of each group sharing their project. Start listing the plethora of curricular standards satisfied by a single project of this kind.

Operatic Diva Bird from Gary Stager on Vimeo.

The Parrott from Gary Stager on Vimeo.

Dr. Jeckyll and Mr. Hyde Robot Pengin from Gary Stager on Vimeo.

Three-Function Bird from Gary Stager on Vimeo.

Singing Bird with Creepy Eyes from Gary Stager on Vimeo.

About the author

Gary Stager, Ph.D. is the founder of the Constructing Modern Knowledge summer institute for educators, coauthor of Invent To Learn – Making, Tinkering, and Engineering in the Classroom, and curator of the Seymour Papert archive site, You may learn more about him and reach out here.

The Hummingbirds Robotics Kit is also available from

Dr. Gary Stager recently authored Intel’s Guide to Creating and Inventing with Technology in the Classroom. The piece explores the maker movement for educators, policy-makers, and school leaders.

Download a copy here.

Intel cover