I am often asked about the adoption of Chromebooks and have spent months agonizing how to respond. This article offers food for thought to teachers, administrators, school board members, and policy makers who might find themself swept up in Chromebook mania.

What should a student computer do?

In addition to being portable, reliable, lightweight, affordable, and with a good battery life, a student computer should capable of doing everything our unimaginative adult reptilian brains think a kid should be able to do with a computer and powerful enough to do a great many things we cannot imagine.

The Chromebook might be sufficient if you believe that the primary purpose of school to be taking notes, looking stuff up, completing forms, and communication. I find this to be an impoverished view of both learning and computing. Children need and deserve more. If you find such uses compelling, kids already own cellphones capable of performing such tasks.

Powerful learning is a bargain at any price

Thirty years ago, my friend and mentor Dr. Cynthia Solomon taught me that sound education decisions are never based on price. Providing children with underpowered technology insults kids, treats them like 2nd class citizens, and signals that schools should get scraps. The more schools settle for less, the less the public will provide.

One of the most peculiar terms to enter the education lexicon is “device.” What was the last time you walked into an electronics or computer store and said to a salesperson, “I would like to buy a device please?” This never happens. You buy yourself a computer.

A device is an object you buy on the cheap for other people’s children to create an illusion of modernity. A Chromebook might be swell for a traveling salesman or UPS driver. It is, in my humble opinion, insufficient for school students in 2017.

Providing students with a Chromebook rather than a proper laptop computer is akin to replacing your school orchestra instruments with kazoos. We live in one of the richest nations in all of history. We can afford a cello and multimedia-capable computer for every child.

My best friend’s son attends a middle school where every student was issued a Chromebook. The kids use them primarily to charge their iPhones.

If someday, Chromebooks are sufficiently robust, reliable, and flexible at a good price, I will embrace them with great enthusiasm. That day has yet to arrive.

Chromebooks represent an impoverished view of computing

Read Seymour Papert and Cynthia Solomon’s 1971 paper, “Twenty Things to Do with a Computer,” (Go ahead. Google it on a Chromebook if you wish) and see how many of things they demonstrated that kids were doing with computers more than 45 years ago are possible on your “device.”

Australian schools in 1989-90 embraced personal laptop computing as a vehicle for programming across the curriculum and created a renaissance of learning with computers that too many educators remain ignorant of or have chosen to forget. Look at the capabilities of the XO computer, aka the $100 laptop, created by the One Laptop Per Child foundation. It was more powerful than today’s Chromebook. We do not to use classroom technology that dooms learners to secretarial roles. They need computers to invent, create, compose, control microcontrollers, program robots, run external machines, build simulations, and write their own software.

Where is S.T.E.M? Or the Arts in the examples of classroom Chromebook use? To those who say that you can compose music, make movies, or edit large audio files on a Chromebook, I suggest, “You first!” The ability to connect things like microcontrollers, robotics, 3D printers, laser cutters may indeed become possible on a Chromebook in the near future, but we already have all sorts of personal computers capable of doing all of those things well today. Why gamble?

When geniuses like Alan Kay, Seymour Papert, Cynthia Solomon, and Nicholas Negroponte spoke of “the children’s machine,” they meant a better computer than what their father used at the office. Today, “student devices” take on an air of condescension and paternalism that disempower young people.

Schools continuously invent that which already exists; each time with diminished expectations.

They love them!

The only time you hear teachers or administrators claim that kids love something is when those very same adults are desperate to justify a bad decision. Telling me that teachers are finally “using technology” since you procured Chromebooks is just an example of setting low expectations for the professionals you entrust with educating children. Making it easy to do school in a slightly more efficient manner should not be the goal. Making the impossible possible should be. Celebrating the fact that a teacher can use a Chromebook is an example of the soft bigotry of low expectations.

How low can you go?

I truly respect and appreciate that public schools are underfunded, but underpowered Chromebooks are not the answer. How cheap is cheap enough for a student “device?”

I recently purchased a 15-inch HP laptop with a touchscreen, extended keyboard, 12 GB of RAM, a 2 TB hard drive, and Windows 10 at Costco for $350. I routinely find real PC laptops capable of meeting the standards I outlined above in the $250 – $350 price range in retail stores. Imagine what the price would be if schools wished to buy millions of them!

If $250 – $350 is too expensive (it’s cheaper than playing soccer for one season), how about $35 for a Raspberry Pi, the powerful computer students can run real software on, including Mathematica, which comes free, on the Pi. A Raspberry Pi 3 computer has greater flexibility, power, and available software than a Chromebook and it costs less than my typical Dominos Pizza order.

If you’re feeling extra flush with cash, add a Raspberry Pi Zero computer to your order for the price of that delicious chocolate chip brownie concoction Dominos offers upon checkout.

The Cloud is not free and it still sucks!

One of the great misconceptions driving the adoption of “devices,” such as the Chromebook, is the promise of cloud computing. Doesn’t that just sound heavenly? The cloud….

How is the Internet access in your school? Painful? Slow? Unreliable? Have hundreds of children do all of their computing in the cloud and you may find the school network completely unusable. The future may indeed be “in the cloud,” but today works really well on personal hard drives.

The cost of upgrading your network infrastructure and then employing a high school dropout named Lenny and all of his mates to maintain the network (ie… lock, block, and tell teachers what they can and cannot do online) is much more expensive than trusting kids to save their files on their own laptop.

The Vision thing

Perhaps I missed something, but I am unaware of the educational vision supporting widespread Chromebook adoption. Google has not even faked an educational philosophy like “Think Different.”

Screwing Microsoft might be fun, even laudable, but it is not a compelling educational vision.

The Google problem

Did you hear that Google has a free salad bar and dry cleaning? How cool is that? I wish our staff room had a barista! The successful penetration of Chromebooks into schools is due in no small part to our culture’s lust for unlimited employer provided vegan smoothies. However, it would be irresponsible for educators to surrender pedagogical practice and the potential of our students to the whims of 23 year-old smartasses at any technology company. Silicon Valley could make its greatest positive impact on education by learning the lessons of history, consulting education experts, and most importantly, paying their fair share of taxes.

There are also legitimate privacy concerns about trusting a benevolent corporation with our intellectual property, correspondence, and student data. Google clearly has a lot to gain from hooking kids and their teachers on “The Google” while turning their customers into product.

The pyramid scheme known as the Google Certified Educator program turns innocent well-meaning teachers into street corner hustlers armed with a participation trophy for heroically mastering “the Google.”

Again, I do not understand why any of this reliance on Google is necessary. The average school could spend well under $100/month on its own email and web servers either on-site or co-located. Best of all, no one is reading your email and you are ultimately responsible for your own files. Let a 5th grader manage the entire operation!

The miracle of Google’s YouTube is that a company makes billions of dollars per year by delivering ad-supported stolen content to users. Any teacher who does not believe that they too are in the intellectual property business should be prepared to be replaced by a YouTube video.

Google envy makes bad education policy.

Unicorn Computing

School decision makers responsible for purchasing Chromebooks have been heard to say the following in justification of their actions.

“I had to get Chromebooks!”

The school up the street got them.

“The latest batch is so much better than the other ones we bought.”         

Why are you investing in unreliable technology and then congratulating yourself for doing it again?

“I know that the Chromebooks don’t do everything we need or want them to do, but they should soon.”

Then why did you buy Chromebooks now?

I call the actions justified by such statements unicorn computing. Peer pressure, hoping, and praying are insufficient justification for saddling teachers and children with underpowered powered unreliable devices – especially when cost-effective options exist.

In Closing…

It doesn’t matter to me if a new kind of computer captures the heart and wallets of consumers. All that matters is that scarce educational resources are used to provide students with maximum potential. If Chromebooks were the first computer ever invented and other options did not exist, I might embrace the Chromebook as a classroom option. If Chromebooks were sufficiently powerful, durable, and reliable, I’d endorse their use. When better computers are available at approximately the same price, disempowering kids and confusing teachers seems an imprudent option.

My life’s work has been dedicated to expanding rich learning opportunities for all students by helping educators embrace the tools of modernity. Much of this work has involved personal computing. From 1990, I led professional development in the world’s first two laptop schools and then countless others inspired by this work. I worked with the father of educational computing, Dr. Seymour Papert, for twenty years and was a member of the One Laptop Per Child Foundation’s Learning Group. Professionally, I have taught children to program computers across the curriculum since 1982. I learned to program in the mid-1970s, an experience that liberated my creativity and opened a window into a world of powerful ideas ever since.

I view computers as personal intellectual laboratories, ateliers, and vehicles for self-expression. The act of computing gives children agency over an increasingly complex and technologically sophisticated world. When every child owns a personal portable computer, they are able to construct knowledge “anytime anywhere,” learn-by-doing, and share their knowledge with a global audience. Computing bestows agency upon learners and allows them to embrace complexity while exploring domains of knowledge and demonstrating ways of knowing unavailable to adults just a few years ago.

There is no greater advocate for computers and computing in education than me. However, the purchasing decisions made by adults, for students, can either amplify human potential or impede learning.

Smaller cheaper computers are an attractive proposition, especially for cash-strapped schools, but I am alarmed by the widespread and too often thoughtless adoption of Google Chromebooks in education. Simply stated, the Chromebook turns back the clock on what we have learned children can do with computers in search of an immature technology.

Look at what preK-6 Mexican teachers did in my recent PBL 360 workshop in Guadalajara. This was their first experience with engineering, physical computing, and programming. They designed, created, and programmed these “birds” in less than two hours with the Hummingbird Robotics Kit and SNAP!

The prompt was simple…

“Make a Bird. Singing and dancing is appreciated.”

There was no instruction. The entire project was completed in under two hours – roughly the equivalent of two class periods.

My work continues to demonstrate the limits of instruction, the power of construction, and the Piagetian notion that “knowledge is a consequence of experience.” There is simply no substitute for experience. Constructive technology and computing amplify human potential and expand the range, breadth, and depth of possible projects. This is critical since the project should be the smallest unit of concern for educators.

Look at these short video clips sharing the teachers’ projects and compare what is possible during an educator’s first or second computing experience with the unimaginative and pedestrian “technology” professional development typically offered. We need to raise our standards substantially.

“You cannot behave as if children are competent if you behave as if teachers are incompetent.” – Gary Stager

The following videos are unedited clips of each group sharing their project. Start listing the plethora of curricular standards satisfied by a single project of this kind.

Operatic Diva Bird from Gary Stager on Vimeo.

The Parrott from Gary Stager on Vimeo.

Dr. Jeckyll and Mr. Hyde Robot Pengin from Gary Stager on Vimeo.

Three-Function Bird from Gary Stager on Vimeo.

Singing Bird with Creepy Eyes from Gary Stager on Vimeo.

About the author

Gary Stager, Ph.D. is the founder of the Constructing Modern Knowledge summer institute for educators, coauthor of Invent To Learn – Making, Tinkering, and Engineering in the Classroom, and curator of the Seymour Papert archive site, DailyPapert.com. You may learn more about him and reach out here.


The Hummingbirds Robotics Kit is also available from Amazon.com.

Hard fun at CMK 2016!

Constructing Modern Knowledge, celebrates its 10th anniversary this July 11-14, and represents the best work of my life. Before anyone was discussing the maker movement in schools, Constructing Modern Knowledge created a four-day oasis where educators could learn-by-doing through the construction of personally meaningful projects with digital and traditional materials. From the start, CMK was never a conference. It was an institute. From its inception, CMK was designed to build a bridge between the best principles of progressive education and the constructive tools of modernity.

Wearable computing

Since our focus was the Piagetian ideal that knowledge results from experience, educators attending Constructing Modern Knowledge, when not lost in project development, engage in formal and informal conversations with some of the greatest innovators and thinkers of our age.

Dont’ miss out! Register today!

CMK Speakers are not recruited for being cute or witty, but because they were experts with a body of profound work. CMK began with guest speakers Alfie Kohn, Peter Reynolds, and digital STEM pioneer Robert Tinker. Until his death, Marvin Minsky, arguably one of the most important scientists of the past century, led eight annual fireside chats with educators at CMK. The great mathematician, scientist, and software developer Stephen Wolfram “subbed” for Professor Minsky last year.

Two of the greatest jazz musicians in history led a masterclass at CMK. Years before his daily Blog changed the media landscape and he was featured in a commercial at the start of the Academy Awards, Casey Neistat was a guest speaker at CMK 2012. Civil rights icon Jonathan Kozol spent time at CMK. Alfie Kohn and Deborah Meier engaged in a spirited conversation, as did Eleanor Duckworth and Deborah Meier. Best-selling historian James Loewen spoke at CMK nearly a decade before Southern States began dismantling confederate statues. Wonder Kid and CMK 2015 speaker, Cam Perron, is about to be honored for his extraordinary contributions to baseball. MIT Media Lab faculty have generously hosted us for eight years. Check out the list of the other amazing people who have spoken at CMK.

YouTube filmmaker and media sensation Casey Neistat spoke at CMK 2012!

One of the great joys of my life has been sharing my heroes and friends with educators. Our faculty consists of brilliant women and men who invented the technology that justified computers in classrooms. Cynthia Solomon, the last surviving member of the three people responsible for inventing the Logo programming language for kids has been with us since the beginning. Everything I know about teaching teachers I learned from Dan and Molly Watt, who abandon retirement each summer to help educators reflect upon their CMK learning adventures. Brian Silverman has had a hand in every strain of Logo, Scratch, and LEGO robotics sets for the past forty years joins us each summer. The Aussies who invented 1:1 computing have been on our faculty as have the co-inventor of the MaKey MaKey and Super-Awesome Sylvia. Sadly, we recently lost the remarkable Edith Ackermann, an elegant and profound learning theorist who worked with Piaget, Papert, and Von Glasserfeld. Edith was part of CMK for three years and touched the hearts, minds, and souls of countless educators. CMK introduced the profound work of Reggio Emilia to a new community through the participation of Lella Gandini, Lillian Katz, and the magnificent Carla Rinaldi.

Legendary author & civil rights icon Jonathan Kozol explores a CMK project

Nothing moves me more deeply than the stories of how CMK participants had coffee or went for a walk with a genius they only had access to because of our institute.

Two of the greatest learning theorists in history, Edith Ackermann & Carla Rinaldi share a laugh at CMK 2016

CMK welcomes educators of all ability levels, from newbies to tech-savvy power users, but everyone learns together from and with each other. Annually, teachers at CMK create amazing projects that might have earned them a TED talk two years or engineering Ph.D. five years ago. For example, educators at CMK 2016 created their own version of Pokemon Go a mere week after the actual software was released to great media fanfare.

Most of all, year-after-year, Constructing Modern Knowledge demonstrates that:

  • Teachers are competent
  • Knowledge is a consequence of experience
  • Learning best occurs in the absence of instruction
  • Technology supercharges learning and makes us more human, creative, expressive
  • Education can and should be non-coercive
  • Assessment is at best adjacent to learning
  • Constructionism is effective
  • Things need not be as they seem
  • It is possible to create rich productive contexts for learning without fancy architecture, bells, furniture, curriculum, tests….
  • Educators are capable of innovation and invention with bleeding edge tools
  • Learning is natural, playful, intense, whimsical, and deadly serious
  • Age segregation, tracking, and even discrete disciplines are unnecessary and perhaps counterproductive
  • A learning environment should be filled with a great variety of objects-to-think with
  • Collaboration is great as long as its natural, interdependent, flexible, mutually beneficial, and desired
  • Computer programming is the new liberal art

Although a labor of love, Constructing Modern Knowledge is a hell of a lot of work and relies on the generosity of countless colleagues. I created CMK when no other institution or organization would do so and have run ten institutes with zero funding, grants, sponsors, or vendors. I packed up the first CMK and caught a plane two hours after the 2008 institute ended. Last year, eight of us spent two and a half days packing up the 60 or so cases of books, tools, materials, and technology we ship across the USA before and after each institute.

A few of the 60+ cases that become the CMK learning environment

Our hearts swell with pride from how CMK alumni are leading schools and professional learning events all over the world. Through their efforts, the impact of Constructing Modern Knowledge will be felt by children for decades to come.

If you have read this far, I hope you will understand that 2017 may be the last Constructing Modern Knowledge. Please consider joining us.

Since CMK believes that anything a learner needs should be within reach, we build a library.

Whether or not the Constructing Modern Knowledge summer institute ends in 2017, we will continue to offer innovative learning adventures for educators around the world. Check out the CMK Futures web site to learn about bringing our expertise to your school, community, corporation, or conference.

Note from Gary Stager…

In 1989, a great friend, colleague and pioneer in educational computing, Steve Shuller, authored the following literature review. Steve was Director of Outreach at Bank Street College during its microcomputer heyday, co-created New Jersey’s Network for Action in Microcomputer Education (N.A.M.E., now NJECC) and was a Director of the IBM Model Schools Project. Shortly before his untimely death Steve prepared this literature review for the Scarsdale, NY Public Schools, hoping that it would contribute to the end of tiresome discussions regarding keyboarding instruction.

Steve would be horrified that this trivial issue lives on in a field that has matured little in the past quarter century. I share his work with you as a public service and in loving memory of a great educator.

Keyboarding in Elementary Schools
Curricular Issues

Stephen M. Shuller
Computer Coordinator
Scarsdale, NY Public Schools

August 1989

Introduction

We are currently in the midst of a world-wide revolution, moving from the Industrial Age to an era in which information is the primary product (Toffler 1984). As information processing tools, computers are central to this revolution. The ability to interact with computers is an essential skill for the Information Age, one which our schools will need to address to prepare our students to meet the challenges of this fundamentally changed world.

The educational reform movement of the 1980’s has recognized the importance of computers in education. For example, A Nation at Risk (1983) calls for the high school students to:

(a) understand the computer as an information, computation, and communication device;

(b) use the computer in the study of the other Basics and for personal and work-related purposes; and

(c) understand the world of computers, electronics, and related technologies. (A Nation at Risk 1983, 26)

Virtually every other reform proposal has included similar recommendations. The educational community has responded to the futurists’ visions of the Information Age and the reformers proposals by working to integrate computers into the curriculum at all levels.

At present, people interact with computers by typing words on typewriter-like keyboards. Even though computers may someday be able to understand handwriting and human speech, in the currently foreseeable future-which in the Information Age may be only a dozen years or so at best-keyboarding skills are necessary to make computers do our bidding. Thus, keyboarding is an essential enabling skill for using computers in schools and in society, and must be included in Information Age curricula (Gibbon 1987).

Even though there is virtual unanimity that students should learn to keyboard, there is considerably less agreement on how, how much, when, and by whom. This paper will consider the teaching of keyboarding in elementary schools, examining these questions as a guide for curriculum development.

Keyboarding and Typing: Historical Context

Computer keyboards are similar to typewriters, Industrial Age tools invented by Christopher Sholes in 1868 and first marketed by Remington in 1873 (Yamada 1983). By the end of the 19th Century, typewriters were considered reliable writing tools, and started becoming widely used in offices (Pea and Kurland 1987). The first typing instruction was provided by typewriter manufacturers in about 1880 (Yamada 1983). It took public schools until 1915 to begin teaching typing as a high school occupational skill (West 1983).

By the 1920’s, educators began to experiment with using the new technology-typewriters–to help children learn to write (Pea and Kurland 1987). These experiments were quite successful. In the largest-scale controlled study, Wood and Freeman (1932) followed 2383 students as they learned to write on portable typewriters over a two year period. They found that the students who used typewriters wrote with more expression, showed higher reading scores, became better spellers, and enjoyed writing more than students learning to write using conventional methods. Similarly, Merrick (1941) found that typewriters helped the English development of high school students. Even so, typewriters did not catch on in education.

In the 1960’s and early 1970’s, there was another smattering of interest in using computers in language arts (Balajthy 1988). Edward Fry, a noted reading specialist at Rutgers University, published a book on using typewriters in language arts which was not widely used. Perhaps seeing a new window of opportunity, Fry (1984) revised his text and reissued it as an approach to keyboarding in language arts.

Since we have known for more than half a century that keyboarding can help elementary school children learn language skills, why have typewriters only rarely found their way into elementary school classrooms, in sharp contrast to the current push to put computers into schools? One answer is that schools by and large reflect the perceived needs of society. Industrial Age schools resembled factories, and funds for typewriters were only available to prepare the relatively few students who would become clerks and typists. Information Age schools must prepare the vast majority of students to use computers because they are information management tools.

But why start elementary school students on computers? Here there is less direct pressure from society and more interest from educators who see the potential to enhance education. The two main factors spurring this interest are the transformation of professional writing through word processing (Zinsser 1983) and the transformation of writing instruction through the process approach (Graves 1983). Computers can greatly facilitate implementation of a process approach to teaching writing (Green 1984; Daiute 1985), so many educators are interested. In the current social milieu, the taxpayers are often willing to supply the necessary equipment.

Keyboarding in Elementary Schools: Curricular Issues

Given that we would like to use microcomputer based word processing as a tool to teach writing, what sort of keyboarding skills will elementary school students need? There seem to be three main alternatives. If they have no familiarization with the computer keyboard, they will have to “hunt and peck.” If they know where the keys are but not how to touch type, they can “peck” without much “hunting,” preferably using both hands. Finally, they can learn to touch type.

Everyone seems to agree that keyboard familiarization is in order, but whether to stop there or to teach touch typing to elementary school students is controversial. Advocates of the keyboard familiarization approach argue that students can type quickly enough to facilitate their writing without touch typing, that touch typing demands too much from limited time and computer resources, and that touch typing skills are quickly forgotten unless the students continue to practice regularly. Advocates of touch typing counter that students who develop the “bad habit” of keyboarding with two fingers find it very difficult to learn correct touch typing skills later and that such skills will ultimately be very important because of increased speed and efficiency.

There is widespread agreement that elementary students need to be able to type at least as fast as they can write by hand to avoid interfering with their writing process. A number of investigators have determined elementary school student handwriting rates. Graham and Miller (1980) found that students in grades 4 through 6 can copy text at a rate of 7 to 10 words per minute (wpm). Graves (1983) found a range of 8 to 19 wpm for 9 and 10 year olds when composing. Freyd and Kahn (1989) found an average rate of 11.44 wpm among 6th graders. With no keyboarding instruction (familiarization or touch typing), students of these ages can generally type 3 to 5 wpm (Wetzel 1985, 1987; Stoecker 1988). Different testing procedures probably accounts for most of the variation in these results. Wetzel (1987) reports that 10 wpm is generally accepted as a benchmark writing rate for students in grades 4 through 6.

Can students learn to type as fast as they can write with a keyboard familiarization program and word processing practice alone? The results are mixed. Freyd and Kahn (1989) report two studies in which students were able to type at writing speed with just keyboard familiarization and practice. one group of 6th graders started with an average rate of 6.62 wpm in October. With one hour of word processing per week, they had increased their average speed to 10.12 wpm in May. On the other hand, Daiute (1985) found that 11 and 12 year olds could write more words by hand in 15 minutes than they could type on the computer even after six months of word processing experience. Dalton, Morocco, and Neale (1988) found that 4th graders were initially comfortable word processing without touch typing instruction, but became frustrated later in the year as they needed to enter longer texts into the computer. In this study, however, students began using the word processor with no previous keyboard familiarization, so the results are not surprising.

Advocates of touch typing frequently claim that teaching touch typing to students who first learned to type without proper fingering techniques is very difficult or impossible (Kisner 1984; Stewart and Jones 1985; National Business Educators Association 1987; Abrams 1988; Balajthy 1988). No empirical evidence is presented to substantiate this claim, however. Wetzel (1987) interviewed several typing teachers, some of whom were concerned about the “hunt and peck unlearning” problem, but others were not concerned, based on their own teaching experiences. West (1983) reports successfully teaching “hunt and peck” typists to use correct touch typing finger positions with about 10 hours of instruction.

By grade 3, children are developmentally able to touch type on electric keyboards. Advocates of touch typing generally agree that students should receive instruction just prior to the time they will need to use touch typing skills for word processing. If studen ts do not regularly practice typing, their skills can deteriorate in as little as six weeks (Warwood 1985). Wetzel (1987) found that students regress in their skills if they do not practice regularly after 20 hours of initial instruction. He cites business education research that students tend to retain their skills once they reach a plateau of 20 wpm. Gerlach (1987) ,found that with continued practice, students continue to improve their speed. In her study, 6th grade students who averaged 9.71 wpm after a 6 to 8 hour keyboarding course improved to 12.27 wpm four months later with continuing word processing practice.

Business educators have proposed a number of touch typing programs for elementary school students, some based on a recommended amount of instruction, others based on a performance criterion. Kisner (1984) recommended touch typing instruction in 20 to 30 minute periods, to a criterion of 20 wpm in Grade 3 or 25 wpm in grades 4 through 6. These recommendations seem to come from the experience of business education teachers with high school students rather than from keyboarding experience with elementary school children.

Jackson and Berg (1986) recommend 30 hours of instruction spread over two or three years, with weekly 30 minute review sessions. Instruction should take place in 20 to 30 minute periods, using a combination of software and a textbook. The recommended course sequence follows the traditional typing course, starting with the home row and introducing two new keys per session, with appropriate drills. Teachers should monitor the students continuously to make sure they are using proper form. Instruction should emphasize speed, not accuracy.

In 1987, the National Business Education Association (NBEA) proposed standards for keyboarding instruction in elementary schools. The NBEA recommended that elementary school students learn touch typing to a criterion of 15 wpm, and middle school students further develop their skill to a criterion of 25 wpm. Not surprisingly, the NBEA recommended that business education teachers, rather than elementary school classroom teachers, provide the instruction.

Wetzel (1985) surveyed the literature on touch typing programs for elementary school students, finding that fifth graders could be taught to touch type 22 wpm with a nine-weeks of daily instruction for 45 minutes, and fifth and sixth graders could achieve 40 wpm by spending one hour daily for a full year.

Alternatively, a more limited keyboarding instruction program consisting of instruction in correct fingering techniques and practice with a computer typing tutorial could lead to an average typing rate of 10 wpm in four weeks of 35 minute sessions or 15 wpm in nine weeks of such sessions. He also observed third, fourth, and fifth graders using word processors without touch typing instruction, finding that those who could type from 7 to 10 wpm were able to make adequate use of the computer for word processing. Given the heavy demands on teaching time in elementary schools, the relatively low level of typing skill needed to facilitate word processing and other computer activity, and the students’ ability to increase typing proficiency through continued computer use, Wetzel recommended a limited keyboarding program to accomplish a typing speed of 10 wpm in a relatively short period of time.

In a later paper, Wetzel (1987) modified these recommendations to take into account differing amounts of computer usage. If students regularly use computers at least two hours per week, Wetzel feels that they will get enough practice to sustain typing skills, justifying a 20 to 30 hour period of initial instruction in touch typing. If students characteristically use computers one hour per week or less, only a much more limited program of keyboard familiarization is recommended.

Stoecker (1988) developed a touch typing program of instruction designed for use by elementary school teachers. After a four week course, 20 sessions of 30 minutes each, fifth and sixth graders achieved typing rates of about 12 wpm. Stoecker’s program consists of student and teacher materials for use with any word processor. He has found that elementary school classroom teachers can learn to use this approach through a one day long training workshop.

Balajthy (1988) emphasizes the importance of integrating keyboarding instruction into the language arts curriculum. He cites recent studies showing that keyboarding can improve language arts skills, results which are consistent with the typewriter-based studies of the 1930’s and 19401s. Balajthy, like Wetzel, finds that students can achieve adequate typing skills with a limited period of keyboarding instruction-about 8 to 10 hours-followed by regular practice with computer activities. Like Stoecker, Balajthy recommends teacher- keyboarding instruction using a word processor rather than use of a software-based tutorial. Balajthy (1987) cautions that unless students have significant amounts of ongoing typing or word processing activity, touch typing instruction is a waste of time because skills will deteriorate rapidly.

One reason why Stoecker and Balajthy recommend keyboarding instruction on word processors with teacher supervision is because computer tutorials cannot monitor correct fingering and other aspects of proper touch typing. Stoecker (1988) reportsthat non-typists tend to use two fingers unless a teacherobserves. In contrast, Mikkelson and Gerlach (1988) performed acontrolled study in which third to sixth graders worked with a computer typing tutorial. Half of the students were supervised and encouraged to use proper touch typing form; the other half were observed but not supervised. The results were surprising–both groups made similar progress in typing skill, and there was no difference between groups in propensity to use correct touch typing techniques.

If Mikkelson and Gerlach’s results are generalizable, it would be possible for elementary school teachers to obtain satisfactory results by teaching touch typing through limited individual work with a computer typing tutorial. Such instruction could take place on classroom computers while other activities were taking place. If students need to be supervised to insure proper fingering techniques, then either elementary classroom teachers will need to be trained to teach touch typing or business education teachers will be needed.

Keyboarding and the Future 

In their Database of Competencies for Business Curriculum Development, the NBEA defined keyboarding as follows:

Keyboarding is defined as the act of placing information into various types of equipment through the use of a typewriter-like keyboard. Typewriting and keyboarding are not synonymous. The focus of a keyboarding course is on input rather than output. (NBEA 1987, A-19)

Keyboarding is seen as a way to input information into a computer so that it can be manipulated. Thus, initial accuracy is less important than speed, ability to manipulate text is more important than formatting skills for specific types of documents, and composing is more important than transcribing (so it does not matter so much if the typist looks at the keys).

These distinctions recognize important changes in the purposes for which people type on Industrial Age typewriters and on Information Age computer keyboards. Yet, if we look closely at the keyboarding programs proposed by business educators, we find a methodology geared to the Industrial Age purpose of transcribing rather than the Information Age purpose of composing (Freyd and Kahn 1989).

This discrepancy is not surprising. As Naisbitt (1982) observed, people tend first to use a new technology in the same ways they have used older technologies which seem similar. only after a (sometimes lengthy) period of incubation do we see new directions or uses that grow out of the technology itself. So, at this point it is useful to take a step back and consider whether we might be looking at the keyboarding issue all wrong.

Graves (1983) has determined that five and six year old beginning writers compose at a painstakingly slow pace of 1.5 words per minute. At that rate, writing down a six word sentence can take up to nine minutes. Even five and six year olds who are unfamiliar with keyboards can compose more quickly and easily on computers than by hand (Wetzel, 1985). Graves has remarked that “one can imagine starting kids off writing on keyboards and save handwriting until motor skills are more highly refined.” (Green 1984).

Fry (1987) has proposed that schools eliminate the teaching of cursive writing and substitute keyboarding. He points out that cursive writing is not taught in European schools; students learn manuscript, and then develop their own handwriting style through shortcuts. By teaching cursive writing instead of keyboarding, Fry says, “we are training for the last century instead of for the next century.”

The issue of touch typing versus two-finger typing may be similar. Gertner and Norman (1984) have observed that the main advantage of touch typing is in copying. Copying is important for Industrial Age clerks and typists to transcribe business documents, but it is irrelevant to writers using word processing to compose and edit. By insisting on touch typing, are we training for the last century instead of for the next?

The New York State Keyboarding Curriculum

The New York State Board of Regents Action Plan to Improve Elementary and Secondary Education Results in New York calls for instruction in keyboarding to be “included in the State-developed English Language Arts Syllabus.” A state education department curriculum guide entitled Developing Keyboarding Skills to Support the Elementary Language Arts Program further stipulates that “approximately 18 to 20 hours of instruction should be devoted to keyboarding instruction within the framework of the Language Arts Program in the elementary grades.” (New York State Education Department 1986, 23).

The state keyboarding curriculum closely parallels material published by the National Business Education Association and by-state and local business education personnel. As described above, this means that the general thrust of the guide recognizes different needs and objectives between traditional typing instruction and keyboarding instruction, the recommended teaching strategies follow a more or less traditional touch typing approach. The influence of the business education community is apparent from the Suggested Readings offered in Appendix B. Of the 25 references listed on pages 29 and 30, 15 are to business education sources, and only 4 are to computer education and 3 more to general education sources.

The state curriculum clearly reflects the relative strength of business educators compared with computer coordinators in New York. For example, under “General Guidelines for Achieving Outcomes,” the guide suggests that:

business education teachers should be called upon to assist in the development of keyboarding curricula, in-service training, and selection of materials and methodology. (5)

Under “Planning for Teacher Awareness and Training:

… the business education teacher … can be very helpful in developing the plan and for training other teachers in appropriate keyboarding techniques. Business education teachers can also serve as a resource once a program is in place to conduct follow- activities as needed. (6)

Under delivery of instruction, the curriculum calls for students to learn touch typing, including correct fingering, posture, and eye contact (away from the keyboard, that is). The guide stops short of requiring business education teachers to teach the keyboarding courses, but states:

Teachers who have been trained in keyboarding methodology are of considerable importance in achieving these goals. (7)

In contrast, computer coordinators are mentioned only once in thecurriculum guide. The guide clearly views computer coordinators as technicians rather than instructional leaders, suggesting that they can be helpful in scheduling labs, repairing equipment, finding software and the like. The next sentence reminds the reader that knowledgeable high school students can also provide “considerable assistance.” (7)

To its credit, the state keyboarding guide does focus on integrating keyboarding into the language arts curriculum, as suggested by Balajthy (1988) and others. But it leans so heavily for its methodology on the perspective of the past that it is” suspect as a guide to the future.

Conclusions and Recommendations

There is widespread agreement that elementary school students need keyboarding skills. Whether keyboard familiarization is sufficient or whether students need touch typing skills depends on the nature of the school’s language arts and computer education curricula.

Touch typing courses are only effective if students receive a substantial period of initial instruction followed by regular practice throughout the school year. Touch typing courses can be recommended when computers are fully integrated into the language arts curriculum and when students regularly have at least two hours of individual computer time per week. In this type of environment, the initial touch typing instruction should occur at the time when students will first become involved with computers on a regular basis. The initial instruction should be provided either by specialists or by classroom teachers who have been given training in how to teach touch typing.

In situations where students make more limited use of computers, the evidence at hand suggests that a program of keyboard familiarization is sufficient to provide adequate keyboarding skills to support word processing and other uses of computers in elementary schools. Keyboard familiarization can be taught by classroom teachers assisted by appropriate computer software.

As we move further into the Information Age, fundamental changes in our school curricula will follow, paralleling the changing needs of society. Envisioning these changes, we can imagine a time when keyboarding will replace cursive writing as an essential skill for elementary school children, complementing a language arts curriculum using computers extensively for such activities as writing with word processors. Developing an Information Age language arts curriculum with keyboarding as a fundamental skill should be a central focus of our long-range curriculum planning.

References

Abrams, Jeri. “Keys to Keyboarding.” Boston Computer Society Education Special Interest Group News 4 (November/December 1988): 6-12.

Balajthy, Ernest. “Keyboarding and the Language Arts.” The Reading Teacher 41 (October 1987): 86-87.

Balajthy, Ernest. “Keyboarding, Language Arts, and the Elementary School Child.” The Computing Teacher 15 (February 1988): 40-43.

Daiute, Colette. Writing and Computers. Reading, MA: AddisonWesley, 1985.

Dalton, Bridget M., Catherine Cobb Morocco, and Amy E. Neale.

“I’ve Lost My Story!” Mastering The Machine Skills for Word Processing. Paper presented at the annual meeting of the American Educational Research Association, New Orleans, 1988.

Freyd, Pamela and Jessica Kahn. “Touch Typing in Elementary Schools-Why Bother?” In William C. Ryan, Ed. Proceedings of the National Educational Computing Conference 1989. Eugene, OR: International Council on Computers for Education, 1989.

Fry, Edward. Computer Keyboarding for Children. NY: Teachers College Press, 1984.

Fry, Edward. Quoted in “Keyboarding replacing writing: Penmanship should be out and typing in, professor says.” The Associated Press, 2 February, 1987.

Gentner, Donald and Donald Norman. “The Typist’s Touch.” Psychology Today 18 (March 1984): 67-72.

Gerlach, Gail J. The Effect of Typing Skill on Using a Word Processor-for Composition. Paper presented at the annual meeting of the American Educational Research Association, Washington, DC, 1987.

Gibbon, Samuel Y., Jr. “Learning and Instruction in the Information Age.” In Mary Alice White, Ed. What Curriculum for the Information Age? Hillsdale, NJ: Erlbaum, 1987.

Graham, Steve and Lamoine Miller. “Handwriting Research and Practice: A Unified Approach.” focus on Exceptional Children 13 (1980): 1-16.

Graves, Donald H. Writing: Teachers-and Children at Work. Exeter, NH: Heinemann, 1983.

Green, John 0. “Computers and Writing: An Interview with Donald Graves.” Classroom Computer Learning 4 (March 1984): 21-23, 28.

Jackson, Truman H. and Diane Berg. “Elementary Keyboarding-Is it important?” The Computing Teacher 13 (March 1986): 8-11.

Kisner, Evelyn. “Keyboarding-A Must in Tomorrow’s World.” The Computing Teacher 11 (February 1984): 21-22.

Koenke, Karl. “ERIC/RCS Report: Keyboarding: Prelude to Composing at the Computer-” English Education 19 (December 1987): 244-249.

McCrohan, Jane. Teaching Keyboarding: The first step in making the computer an effective writing tool. Paper presented at the New Jersey Educational Computing Conference, 1989.

McLean, Gary N. “Criteria for Selecting Computer Software for Keyboarding Instruction.” Business Education Forum 41 (May 1987): 10, 12.

Merrick, Nellie L. “Typewriting in the University High School.” School Review 49 (April 1941): 284-296.

Mikkelsen, Vincent P. and Gail Gerlach. Teaching Keyboarding Skills to Elementary School Students in Supervised and Unsupervised-Environments. ERIC Document Number ED301152, 1988.

Naisbitt, J. Megatrends: Ten New Directions Transforming our Lives. New York: Warner Books, 1982.

National Business Education Association. Database of Competencies for Business curriculum Development, K-14. ERIC Document Number ED 294064, 1987.

A Nation at Risk: The Imperative for Educational Reform (Washington, DC: U.S. Government Printing Office [1983]).

Pea, Roy D. and D. Midian Kurland. “Cognitive Technologies for Writing.” In Ernst Z. Rothkopf, Ed. Review of Educational Research, Volume 14. Washington, DC: American Educational Research Association, 1987.

Stewart, Jane and Buford Jones. “Keyboarding Instruction: Elementary School Options.” Business Education Forum 37 (1983): 11-12.

Stoecker, John W. Teacher Training for Keyboarding Instruction– 4-8: A Researched and Field Tested Inservice Model. ERIC Document Number ED290451, 1988.

Warwood, B., V. Hartman, J. Hauwiller, and S. Taylor. A Research Study to Determine the Effects of Early Keyboard Use upon Student Development in Occupational Keyboarding. Bozeman, MT: Montana State University, 1985. ERIC Document Number ED 265367.

West, L. The Acquisition of Typewriting Skills. Indianapolis, IN: Bobbs-Merrill, 1983.

Wetzel, Keith. “Keyboarding Skills: Elementary, My Dear.” The Computing Teacher 12 (June 1985): 15-19.

Wetzel, Keith. “Keyboarding-An Interview with Keith Wetzel.”

Making the Literature, Writing, Word Processing Connection. The Writing Notebook, 1987.

Wood, Ben D. and Frank N. Freeman. An Experimental Study of the Educational Influences of the Typewriter in the Elementary School Classroom. NY: MacMillan, 1932.

Yamada, Hisao. “A Historical Study of Typewriters and Typing Methods: from the Position of Planning Japanese Parallels.” In Dudley Gibson., Ed. Wordprocessing and the Electronic office. LondonCouncil for Educational Technology, 1983.

Zinsser, W. Writing with a Word Processor. NY: Harper and Row, 1983.

Eric Rosenbaum (L) demonstrates the MaKey MaKey to Marvin Minsky (R) at CMK 2012

Constructing Modern Knowledge 2017 is thrilled to announce that Dr. Eric Rosenbaum will be joining our 10th annual summer institute, July 11-14 in Manchester, New Hampshire. Eric, one of the most prolific inventors of creative play materials for learners (MaKey MaKey, Beetleblocks, Singing Fingers, Coloring Cam – to name a few) will provide CMK 2017 participants with a sneak peak at the much-much-anticipated Scratch 3.0 programming environment!

Register for Constructing Modern Knowledge 2017

Dr. Rosenbaum will lead a demo and Q&A after a presentation by CMK 2017 guest speaker, Dr. Neil Gershenfeld, Director of MIT’s Center for Bits and Atoms and maker movement pioneer at our very special reception at the MIT Media Lab. Gershenfeld is author of the seminal book, Fab: The Coming Revolution on Your Desktop–from Personal Computers to Personal Fabrication, a book that created the foundation for the modern maker movement.

Eric Rosenbaum and Neil Gershenfeld join littleBits Founder and CEO, Ayah Bdeir, and MacArthur Genius-Award winning educator (and CMK favorite) Deborah Meier as guest speakers at Constructing Modern Knowledge 2017.


About Eric Rosenbaum, Ph.D.

Eric Rosenbaum earned a Ph.D. in the Lifelong Kindergarten group at MIT Media Lab, where he created new technologies at the intersection of music, improvisation, play and learning. He is currently the Senior Front End Engineer Scratch in the MIT Media Lab’s Lifelong Kindergarten Group and worked recently with the with Google Creative Lab and NYU Music Experience Design Lab. Eric’s projects include the MaKey MaKey invention kit, the Singing Fingers app for finger painting with sound, the Glowdoodle web site for painting with light, Coloring Cam app for using your camera and the world as a coloring book, MmmTsss software for improvising with looping sounds, and a Scratch-like language for creating interactive behaviors in the virtual world of Second Life.

One of his latest projects is the creation of Beetle Blocks, a visual programming language for creating 3D designs you can print. This will be Eric’s third year at Constructing Modern Knowledge.

Eric Rosenbaum on the faculty of CMK 2012

Eric holds a Bachelors degree in Psychology and a Masters degree in Technology in Education from Harvard University. He also holds a Masters degree and Ph.D. in Media Arts and Sciences from MIT Media Lab, for which he developed Jots, a system to support reflective learning in the Scratch programming environment.

Learn more about Eric here.

Register for Constructing Modern Knowledge 2017


About Constructing Modern Knowledge 2017

Constructing Modern Knowledge, July 11-14, 2017 is a minds-on institute for educators committed to creativity, collaboration and computing. For ten years CMK has been viewed as the gold standard of professional learning events at the intersection of learning-by-doing, cutting-edge technology, and progressive education.

Participants will have the opportunity to engage in intensive computer-rich project development with peers and a world-class faculty. Inspirational guest speakers and social events round out the fantastic event. Rather than spend days listening to a series of speakers, Constructing Modern Knowledge is about action. Attendees work and interact with educational experts concerned with maximizing the potential of every learner.

While our outstanding faculty is comprised of educational pioneers, bestselling authors and inventors of educational technologies we depend on, the real power of Constructing Modern Knowledge emerges from the collaborative project development of participants.

Each day’s program consists of a discussion of powerful ideas, mini tutorials on-demand, immersive learning adventures designed to challenge one’s thinking, substantial time for project work and a reflection period.

Register for Constructing Modern Knowledge 2017

Back in the late Eighties, there was a Logo Conference held in Los Angeles. After a wild night reminiscent of Martin Scorsese’s 1985 film, “After Hours,” longtime Papert collaborator Brian Silverman and I found ourselves locked out of where we were supposed to sleep.

Seymour Papert & Gary Stager in Sydney, 2004

Ever the problem solver, Brian said, “Seymour always has a big room. We can sleep there.”

So, we drove back across town and woke Seymour before 5 AM. Despite our discourteous invasion and before we went off to sleep, Papert offered a bit of profundity that withstands the test of time.

One of the people we had been partying with earlier in the evening was teacher, turned software developer, Tom Snyder. Brian remarked something along the lines of, “Tom is a good guy.” Seymour disagreed and said that he viewed the world of educational technology as a triangle with Alfred Bork, Tom Snyder, and himself (Papert) in each of the vertices.  Papert went on to say that each of the three men possess a stance that views technology as benefitting one of three constituents in the educational system.

Alfred Bork was notorious for saying that teachers had low SAT scores, were not very bright, and any future teacher shortage would be corrected by replacing teachers with teaching machines. Today’s online testing, “personalized instruction,” and other dystopian systems concerned with delivery, testing, surveillance, and accountability are manifestations of Bork’s fantasies.

Tom Snyder was a fledgling educational software designer in the late 1980s trying to make payroll and in need of a catchy marketing niche. He looked around and found that most classrooms had one computer. So, he decided to make software for the “one computer classroom.” In this scenario, the teacher was an actor, the classroom was a set, and the computer was a prop for engaging in whole class or small group problem solving. Oddly, this practical marketing slogan born from a shortage of computers nearly thirty years ago remains an enduring metaphor for classroom computer use. The “interactive” whiteboard is one example. (Some of Tom’s software is still available)

A Choice Must Be Made

Seymour Papert believed in the late 1960s that every child would and should have a personal computer with which to mess about with powerful ideas, create, and collaborate.

These three points of view described by Papert in the middle of the night described how technology is not neutral and in an educational setting, it always grants agency to one of three actors; the system, the teacher, or the student. Papert’s disciples see the greatest benefit arising from granting maximum agency to the learner.

Technology is never neutral. An incredibly clever teacher might be able to pull a technology a little bit between the vertices in the triangle, but that doesn’t change the equation. Educators need to decide upon whom they wish to bestow agency. I’m in Papert’s corner. It is best for learners and enjoys the greatest return on investment.


Gary Stager is the founder of the Constructing Modern Knowledge summer institute for educators July 11-14, 2017, coauthor of Invent To Learn – Making, Tinkering, and Engineering in the Classroom, and curator of the Seymour Papert archive site, DailyPapert.com.

Register today for Constructing Modern Knowledge 2017!

 

Bungling the World’s Easiest Sale

Forty years ago Seymour Papert began talking about a computer for every learner. In 1968, Alan Kay sketched the first personal computer as a tool for children. In 1989, Steve Costa began teaching entire classes of fifth grade girls each equipped with a laptop. In 1994, Cobb County Congressman Newt Gingrich advocated a laptop per student. Nearly a decade ago hundreds of kids at Harlem’s Mott Hall schools began taking laptops to and from school. Several years ago Maine passed a law providing a laptop for every 7th and 8th grader. Books like Bob Johnstone’s exhaustive history, “Never Mind the Laptops,” have been published and countless research studies have been concluded.

And yet in 2005, the notion of a laptop for every student appears to be more controversial than ever. In fact, the proverbial laptop has hit the fan across the country. Shame on us!

The Cobb County, Georgia schools were well on their way to purchasing 63,000 iBooks for teachers and students when a cranky politician sued and got a judge to order an end to the initiative. The cause of the judicial intervention was an accusation of fraud. Voters approved a tax levy designed to “upgrade obsolete computer workstations,” yet the judge seems to think that purchasing laptops does not represent an upgrade. This is a distinction without difference.

My experience suggests that parents eagerly embrace sincere efforts to revolutionize education.

The Atlanta Journal and Constitution and Marietta Daily Journal have featured hysterical reports on the laptop initiative for months. They smell blood and are going after district personnel for among other crimes, having been involved in the planning process and funding teacher professional development. The local press was outraged that Cobb County decided to purchase Apple iBooks instead of the Dell laptops that Henrico County, Virginia just bought for $50 less per unit.

If your educational goals consist of students making four slide PowerPoint slides about frogs to disinterested audiences or using the web to find five interesting facts about Spiro Agnew, then sure, go to Wal-Mart and buy the cheapest laptops. You might even ask kids to bring their PSPs to class and use those instead.

Fiscal prudence with the public purse is noble, but it is irresponsible to make computer purchases based solely on price. Not all computers are created equally. A public agency should be able to make the case that the bundled iLife creativity suite and operating system that Walter Mossberg of the Wall Street Journal says, “leaves Windows XP in the dust,” is worth a few extra dollars per unit. A legitimate educational rationale should be able to be made for purchasing Macs if a district so chooses.

Henrico County, VA made a great contribution to educational computing five years ago when they found a way to purchase more than 20,000 iBooks without raising taxes. Since then their missteps and public pronouncements have made it more difficult for other schools to embrace 1:1 computing. As the Governor of Maine fought for his laptop legislation, Henrico was in the news for inappropriate web use and an overreaction to isolated student mischief. This led Maine and other jurisdictions to accept crippled operating systems that calm the public’s fears, but create unintended consequences down the road. Disabling iTunes means no Tupac, but it also means no Martin Luther King, no Garageband music composition, no podcasting and no videoconferences with NASA scientists.

Just as Cobb County’s laptop plans were hitting their stride, Henrico struck again. Their school board loudly “dumped” Apple and signed a contract with Dell for their next round of laptops. Henrico officials explained that iBooks don’t have Microsoft Office on them. That’s funny. Lots of other schools run Office on their iBooks? Why are school districts issuing press releases announcing their purchases? Why does anyone care? I have no idea which brand of school bus or tater-tots Henrico purchases, why are laptops different?

To complete the Apple exorcism, Henrico decided to sell the dreaded iBooks to the public for $50 each. This led to what is now known as the “iRiot” in which 17 people were trampled and four were hospitalized. CNN reported a woman soiled herself and a guy used a folding chair to beat off other shoppers. Rather than apologize, a district official suggested that the event had “entertainment value.”

Whatever it says on your business card, you’re in sales.

When the legislature opposed his laptop plan, Maine Governor King traveled the state leading creative laptop-based history lessons and generating popular support. He spoke of the democratization of knowledge and opportunity. When the Governor proposed that Maine become “the learning state” with a reenergized economy, he demanded that politicians support the initiative.

Whatever level of public support Cobb County’s plans enjoyed, it was insufficient to ward off the opposition. The public was offered incremental gains in teacher use of computers, a modest gain in students looking up stuff on the Internet at least once a day from 20-50% and a promise that 60% of students will occasionally use brainstorming software. Textbook content would be delivered via the laptop. Woo hoo! I’ve got goose bumps! Where do I send my check?

Worst of all, the district lacked the courage to say that every student would be expected to use the laptop. How can someone opt-out of using the principal instrument for intellectual work, knowledge acquisition and creative expression? Can a student opt-out of using books? Express a moral objection to lectures?

Amidst the unambitious benchmarks and narrow vision, the district’s FAQ just makes stuff up, such as in the case of literature instruction, “software and Internet access can provide access to nearly every published title.”

I’ve worked with many 1:1 schools over the past fifteen years and have found it remarkably easy to justify the investment to auditoriums full of parents. It’s an easy sale when you offer a vision of children learning in unprecedented ways. I share examples of at-risk students increasing attendance and engaging in sophisticated projects, sophisticated concepts being learned in ways impossible just a few years ago, enhanced creativity, more work-related social interactions and learning 24/7, not just between the bells. Images of children participating in the construction of modern knowledge as mathematicians, composers, artists, engineers, poets and scientists appeal to the hopes and dreams of parents.

We need to do a much better job of selling the dream of what computers can bring to the learning process, but first we need to create some compelling models for citizens to embrace. We’ll have plenty of time to do so while we clean up the public relations mess created by the recent ham-fisted laptop implementations.

Read more

Blocked Web sites, IT staff that exist to hinder staff, and restrictive policies make integrating technology too hard to overcome
By Gary S. Stager, Ph.D.
Originally published in District Administration Magazine – December 2002

I recently spent a week teaching in a wonderful school. The school sits on a gorgeous sprawling campus. The principal is well read and charming. The students were delightful and the teachers generous with their hospitality. Every student has his or her own laptop. I was engaging the children in activities I love, and yet I found the overall experience excruciating. Why? Because of an information technology staff run amok.

The unchecked policies, practices and prior restraint exercised by the school’s information technology team made it impossible for me to teach effectively. It seemed as if a surprise lurked behind every mouse click and URL. Despite the school’s enormous investment in computers and networking, very little of it actually worked in the ways one would expect

Non-educators implemented policies prohibiting teachers from-downloading and uploading files, regardless of their content. IP settings needed to be changed when a user switched from an Ethernet to wireless connection. The streaming of QuickTime or RealMedia ties was prohibited regardless of their educational value. Student work could not be published online because the school’s “extranet” has yet to go live. I think extranet is some meglamaniac’s synonym for the Internet

I face similar frustrations at every school I visit–anywhere in the world. I need to beg a network technician for the magical network password, secret IP settings or request an act of Congress to make a presentation. Teachers enrolled in Pepperdine University’s prestigious Online Masters in Educational Technology are routinely denied access to their own coursework by ridicolous filters that ban .edu domains.

It is worth noting that none of these obstacles protect children from the real or imagined threat of pedophiles from Turkmenistan or inappropriate Web content. These obstructions are the creation of control freaks eager to maintain authority they neither earn or deserve. The payroll and morale costs are inestimable.

The Looming Crisis
Computer coordinators used to say, “If I do my job, I won’t have a job in two years.” A decade later there seems to be a dozen non-instructional tech coordinators, directors or managers for each of their predecessors.

Haven’t computers become easier to use and more reliable? Shouldn’t professional educators be competent computer users after a generation of bribing, begging, cajoling, tricking, threatening, inservicing and coercing? If so, then why do we have so many support personnel employed by schools? How much do they cost? When will they be unnecessary?

Reasonable people may disagree over the role of Web filtering and schools have a finite budget for bandwidth. However, IT personnel are making insane, expensive and miseducative decisions. There is no greater threat to successful classroom computer use than the actions of the staff employed to support that very use.

The Web is not static. Plug-ins are not a cancer, they add functionality. I am grateful that Web browsers were built with an open architecture allowing them to be extensible. This has accelerated the power of the Web in ways unanticipated by its creators.

The power of the Web is in its ability to democratize publishing and offer students the potential for unlimited audience. This is a critical educational rationale derailed by non-educators. Such policies insult professional educators.

Administrators who give unprecedented budgetary discretion and policy-making control to IT staff are abdicating their responsibilities. School leaders need to summon the courage to face things that plug-in and become conversant in networking issues. They must supervise non-instructional personnel and determine their actual staffing needs. Failure to do so results in an enormous waste of money, teacher dissatisfaction and underutilized technology.

I have been using computers for more than 25 years. I use and maintain a cross-platform wireless network at home. I write computer manuals, program in several languages and yet needed to call for help every few minutes during my recent teaching stint. The average teacher juggling all of her responsibilities with a desire to use computers in the classroom does not have a prayer.

The following videos are a good representation of my work as a conference keynote speaker and educational consultant. The production values vary, but my emphasis on creating more productive contexts for learning remains in focus.

  • For information on bringing Dr. Stager to your conference, school or district, click here.
  • For biographical information about Dr. Stager, click here.
  • For a list of new keynote topics and workshops by Dr. Stager, click here
  • For a list of popular and “retired” keynote topics by Dr. Stager, click here.
  • For family workshops, click here.
  • To learn more about the range of educational services offered by Dr. Stager, click here.

View Gary Stager’s three different TEDx Talks from around the world

Watch Gary Stager: My Hope for School from Gary Stager on Vimeo.
This clip is part of the documentary Imagine It 2


2016 short documentary featuring Dr. Stager from Melbourne, Australia.



Learning to Play in Education: Joining the Maker Movement
A public lecture by Gary Stager at The Steward School, November 2015

Dr. Gary Stager Visits the Steward School, 2015

A Broader Perspective on Maker Education – Interview with Gary Stager in Amsterdam, 2015

 Choosing Hope Over Fear from the 2014 Chicago Education Festival


This is What Learning Looks Like – Strategies for Hands-on Learning, a conversation with Steve Hargadon, Bay Area Maker Faire, 2012.


Gary Stager “This is Our Moment “ – Conferencia Anual 2014 Fundación Omar Dengo (Costa Rica)
San José, Costa Rica. November 2014

 

.
Gary Stager – Questions and Answers Section – Annual Lecture 2014 (Costa Rica)
San José, Costa Rica. November 2014

TEDx Talk, “Seymour Papert, Inventor of Everything*


Ten Things to Do with a Laptop – Learning and Powerful Ideas
Keynote Address – ITEC Conference – Des Moines, Iowa – October 2011


Plenary Talk at Construtionism 2014 Conference
Vienna, Austria. August, 2014

 


Children, Computing and Creativity
Address to KERIS – Seoul, South Korea – October 2011

 


Gary Stager’s 2011 TEDxNYED Talk
NY, NY – March 2011

 


Gary Stager Discusses 1:1 Computing with leading Costa Rican educators
University of Costa Rica – San José, Costa Rica – June 2011

 

Progressive Education and The Maker Movement – Symbiosis or Mutually Assured Destruction? (approx 45:00 in)
FabLearn 2014 Paper Presentation
October 2014. Stanford University

Keynote Address: Making School Reform
FabLearn 2013 Conference.
October 2013. Stanford University.

Making, Love, and Learning
February 2014. Marin County Office of Education.


Gary Stager’s Plenary Address at the Constructionism 2010 Conference
Paris, France – August 2010

 


Gary Stager Excerpts from NECC ’09 Keynote Debate
June 2009 – Washington D.C.

For more information, go to: http://stager.tv/blog/?p=493

 


Dr. Stager interviewed by ICT Qatar
Doha, Qatar – Spring 2010

 


Learning Adventures: Transforming Real and Virtual Learning Environments
NECC 2009 Spotlight Session – Washington, D.C. – June 2009
More information may be found at http://stager.tv/blog/?p=531

 

© 2009-2016 Gary S. Stager – All Rights Reserved Except TEDxNYED & Imagine IT2 clip owned by producers

May 2016

I spent this morning in the company of extraordinary women. First, I was delighted to attend the National Center for Women in IT keynote address “Intersectionality & Diversity in Computing: Key Dilemmas and What to Do About Them.” by one of my sheroes, Professor Melissa Harris-Perry. Next, I attended a talk by Mimi Ito about how the intersection of youth and digital culture were converging with traditional opportunities to create greater social capital, particularly among underserved populations. At the end of her session, my friend Cynthia Solomon (recipient of the NCWIT Pioneer Award last night), raised an important issue. She expressed concern about how Minecraft charges users and therefore makes it inaccessible to poor children. Dr. Ito agreed about the financial barrier to participation and said that important people, such as herself, were asking Microsoft, the owners of Minecraft, to make the software free. The audience was pleased with that response.

This might surprise you, but I disagree. Schools, teachers, and kids should pay for software.

Software does not grow on trees. It is created by artists, programmers, writers, designers, and engineers who need and deserve to feed their families, just like the humble teacher. The continuous devaluing of software, along with other media, profits no one in the short-term and giant corporations in the long-run. This phenomena not only harms the earning potential of creators, but ensures that educators will be deprived of high quality tools and materials. Sorry, but you get what you pay for.

I know what you’re thinking. We’re just poor teachers. Our budgets are slashed to the bone. We fundraise for crayons. Software is ephemeral. We should not have to pay for it like when we happily purchase “real” things; flash cards, interactive white boards, or that hall pass timer that reminds kids to poop faster.

There have only been a handful of truly innovative software programs ever created for learning (MicroWorlds, The Zoombinis, Geometer’s Sketchpad, Rocky’s Boots, LogoWriter, Inspire Data, My Make Believe Castle, Broderbund’s Science Toolkit) over the past three decades. That development pipeline has rusted over while software becomes “free.”*

Inspired by Dr. Harris-Perry’s address, I suggest that we are looking at the Minecraft cost issue from the wrong perspective. The problem is not that Minecraft (or even better more educative software) isn’t free, but that schools are so poorly funded they cannot afford to pay for what they need.

Fix the funding system! Make Silicon Valley pay their fair share of taxes! Give teachers discretionary funds for classroom activities! Change the tax code to allow teachers to deduct classroom materials from their income tax! Don’t destroy the handful of creative companies who create great materials for children.

Don’t tell me that you’re preparing kids for S.T.E.M. jobs while demanding free software!

The High Cost of Free

Aside from the vulgarity of Donors Choose, the most unattractive example of teacher dependency and low self-esteem is the desire to become corporate certified. What’s next? Should teachers where festive holiday sweaters affixed with corporate sponsor logos like NASCAR drivers or Happy Meals? If not, then why the rush to advertise your corporate affiliation on your blog, Twitter profile, or CV?

Google is not your friend. They are a giant corporation selling users and their data to other corporate customers. That doesn’t bother me 10 percent as much as the spectacle of educators begging for corporate affection.

Go ahead. Name a single educational idea or value Google has added to educational practice. Cheap, free, and easy are not powerful ideas. There is nothing progressive in using cloud-based versions of office software or denatured half computers in the form of Chromebooks. Why should any educator care what Google thinks about teaching or learning?

Google certification is particularly embarrassing. I do not understand why any “professional” educator would parade around in an “I can use The Google and type a memo” sash. Such educators are uncompensated evangelists and walking billboards for Google, perhaps at their own peril.

The price of integrity must be more than “free” photo storage or use of a Web-based word processor.

Don’t believe me? Read Maria Schneider’s Open Letter to YouTube, “Pushers” of Piracy. Really read it. Read it again. Think about it. Share it.

Ms. Schneider is neither a crank or Luddite. She is a spectacularly talented composer who earned the first ever Grammy Award for an Internet crowd-funded project. In her article, she details how Alphabet/Google/YouTube profits from piracy, protects pirates, demonizes artists, and strong-arms creators into entering self-destructive business arrangements. Like other corporate bullies. Alphabet/Google/YouTube hides behind lobbyists while portraying themselves as martyrs.

Teachers need to stand with creators, not Google. If teachers do not view themselves as “content creators,” then they should be reminded that there are powerful corporate interests who would like to replace them with YouTube videos and a Web-based comprehension quiz.

Don’t stand with Google! (or any other company)
Schmoozing with salespeople does not and should not define you as an educator. Stand with and on the shoulders of other great educators. Be content to be a customer, never the product or a prop.


Footnote
* Next time you are told that “The Cloud is free,” ask how much money your school/district is paying to employ IT personnel who guard, monitor, secure, or block it. How much does all that extra bandwidth cost? What can’t children do or learn while waiting for “The cloud” to have the functionality of a 5-10 year-old PC?