I have often wondered why educators are so darn excited about Google. They get “Google Certified,” attend Google conference sessions, mourn when features change or Google loses interest in a platform they LOVE(d). Google loving teachers attend summits that are a cross between an Amway convention and cult meeting. Districts trust their communications and document storage to a company they know harvests their data (and that of their students) just to save a few bucks on an email server. School leaders have never met Mr. Google or any of his designees, but trust them anyway.

Millions upon millions upon millions of dollars are spent annually on teaching seemingly competent adult educators to in the words of President George W. Bush, “use the Google.”

Now, don’t get me wrong. The Google is a swell thing. You type something into a box and related web pages are displayed – just like the search engines that came before it. Google PhotoScan is a little piece of magic for rescuing and preserving family photos. We trust Google a lot and have become reliant on a faceless corporation who can change the terms of service or kill a platform we rely on at the drop of a hat.

One of my favorite tweets of all time was when I asked, “Which should I care less about, Google Wave or Google Buzz?” It turns out that I hit the exacta when Google quickly took both Wave and Buzz behind the barn and shot them Gangnam Style. I get the sense that Google operates like libertarian toddlers who just finished a jumbo box of Lucky Charms cereal right before their community theatre performance of Lord of the Flies.

Mad at me yet? No? OK. Good. Let’s move on.

The one Google thingy that schools really love is Google Docs. Boy, do they love Google Docs.

I have long wondered why? We have had word processors for thirty-five years. Most computers come with a free one adequate for most school applications and there are certainly better “Office” suites available. Many schools already own them.

So, why oh why the love affair with Google Docs? I offer a few hypotheses.

Here are the Top Three Reasons Why Schools Love Google Docs. [Drum roll please…]

  1. Google is cool. The Googleplex has vegan cafeterias, free dry cleaning, massage chairs, AND Ping-Pong tables. I wish our teacher’s lounge had a Pachinko machine and an assortment of herbal teas. That would make me cool too!
  1. Nuthin’ cheaper than free

and the number one answer why schools love Google Docs is….

  1. Collaboration!!!!!!

Collaboration is nice. Schools like nice. Being collaborative is what nice people do when they want to create nice things.

We have been here before

In the late 1980s, collaboration was all of the rage, but back then it was called cooperative learning. Cooperative learning. A school district sent me to a Robert Slavin Cooperative Learning Boot Camp run by Johns Hopkins University. Like any good boot camp, its intent was to beat us down and build us back up again as champions of cooperative learning. Colleagues were immediately separated so they could not question the dogma or rebel in any way. We learned to “jigsaw” boring and irrelevant curricula.

We were taught to create student teams of four kids; always four kids. The teams should be comprised of a smart kid, a dumb kid, a girl, a boy, a Black kid, a White kid, a skinny kid, a fat kid… Each team should stay together with their desks side-by-side for six weeks, always six weeks. If we did this, spelling test scores would improve.

Of course, during that prehistoric era, Google engineers were not even old enough to disrupt their own Waldorf schools. So, sadly there were no Google Docs to create multiplication flash cards or use all of our vocabulary words in a sentence. The word-processed five-paragraph essay in the cloud would have to wait.

TRIGGER WARNING!

Since 90% of what schools do is Language Arts and 98% of what they do with computers is language arts[1], Google Docs is mostly used for writing, but its secret power is collaborative writing.

I am a professional writer. (Not that you can tell from this essay) I am the author of hundreds of magazine articles, about as many blog posts (yeah, big whoop), a 450,000 word doctoral dissertation, countless academic papers, and co-authored one of the best-selling books about educational technology.

All of this qualifies me to say something heretical. (IMHO)

Writing is not collaborative!

(Please take a deep breath before declaring me a big meanie poo-poo head.)

You may write different parts of something and smush them together. You may peer-edit. You may create an anthology or periodical containing writing by several people, but writing is a solo sport. Writing is the result of one person’s internal processes.

Collaboration is more than simply the division of labor. It should not be taught as an isolated skill or coerced. Sadly, like many seemingly good ideas, schools seek to mechanize collaboration by turning natural process into a set of measurable skills and multi-year course of study, easily assessed. Some children win, while others fail.

Teams are created by teachers drawing Popsicle sticks with kids’ names written on them (until the teacher doesn’t like a random pairing and “fixes” it.) Students sense the capricious nature of this process and waste precious class time working the refs to get assigned teammates they like. Working with people with whom you are compatible is a logical idea frequently squelched by school “collaboration.”

Back in the halcyon days of Cooperative Learning™, a reporter for the long-defunct Electronic Learning Magazine asked Seymour Papert an intentionally softball question, “What do you think of Cooperative Learning?” Papert replied, “I think it is a profoundly bad idea to force children to work together.”

Oooh! Snap!

Collaboration should be natural

Cooperation and collaboration are natural processes. Such skills are useful when the creative process benefits from interdependence. The best collaboration mirrors democracy when individual talents, knowledge, or experiences are contributed to produce something larger than the sum of its parts.
Work with your friends. Work with people you trust. Work with people who have different skills or expertise. If that doesn’t produce the result you desire, you will find others to collaborate with. That is how you learn to collaborate. You may teach it, but the students will not stay taught.

Honestly, I could not care less about whom my students (kids or adults) choose to work with. The only reason to assign group size is scarcity of materials (we have to share). Even in those largely avoidable scenarios, it hardly matters if group size varies a bit. The main consideration is inactivity by some members when a group is too large.

Collaboration is both selfish and selfless. You give of yourself by sharing your talent and expertise, but the collaboration should benefit you as well.

Collaboration should be fluid

One of the great joys of Constructing Modern Knowledge derives from the range of collaboration on display at my annual institute. At the start, participating educators suggest a vast array of project ideas ranging from the sublime to the ridiculous. Participants identify which project they wish to work on and commence collaboration. If a person loses interest, becomes inspired by another project, or is incompatible with a teammate, they are free to join a different project or start a new one. Some people move effortlessly between multiple project teams; learning even more.

When projects are shared at the end of four days, three to five person teams have created the majority of projects, some may have a dozen or more collaborators, and we often discover delightful projects created by someone who quietly sat in the corner and worked alone.

I have been fortunate to learn a great deal about what I know about learning from some of the world’s best jazz musicians. Those who are expert at what they do, like musicians, artists, and scientists, pursue greatness by working tirelessly on what bugs them. That continuous and indefinite attention to detail makes them incredibly good at articulating how it is that they do what they do. In other words, they are great teachers.

The very fine jazz pianist and educator Peter Martin recently interviewed saxophonist Branford Marsalis and vocalist Kurt Elling about their remarkable collaboration, “Upward Spiral” (recording and tour). Marsalis and Elling are both highly accomplished A-list artists with their own working bands and artistic concepts. Yet, they have decided to spend a couple of years putting “their thing” on hold to create something new, wondrous and collaborative in the best, most natural, sense of the word. The music they create together on stage is transcendent and not to be missed.

During Peter Martin’s podcast, my old friend Branford Marsalis shares his profound concept of collaboration and juxtaposes it against the version so often practiced in schools. There is much to be learned here.

“The whole idea of a collaboration (to me) is that nobody gets to do what is that they do. The modern interpretation of collaboration is I know what you do. You do know what I do. Let’s get a head start and run real fast and collide into one another and whatever spills out over the side is the collaboration.” – Branford Marsalis

True collaboration is great. It’s even better than a free word processor.


Notes:
[1] I pulled those figures out of my bum, but I have been doing so for decades and no one has been able to disprove this completely fabricated assertion.



Gary Stager is the founder of the Constructing Modern Knowledge summer institute for educators July 11-14, 2017, coauthor of Invent To Learn – Making, Tinkering, and Engineering in the Classroom, and curator of the Seymour Papert archive site, DailyPapert.com.

Register today for Constructing Modern Knowledge 2017!

[April 2016] At last week’s #asugsv Summit, the annual bacchanal where dilettantes, amateurs, libertarians, billionaires, and Silicon Valley mercenaries gather to plot the destruction of public education in plain view, Dr. Condoleeza Rice of 9/11 and Iraqi war infamy shared her expertise on “reforming” public education. Like many simpletons and profiteers, Dr. Rice seeks salvation in dystopian technology and reportedly demonstrated a level of understanding of educational technology similar to her imaginary “mushroom cloud” in Baghdad.

“Technology is neutral,” Rice observed. “It’s how it is applied that matters.” Technology can be used to support a world in which a child’s zip code or color or gender or age doesn’t shape their future—just their commitment to getting an education, she said. (Edsurge – Heard & Overheard at the ASU+GSV Summit. April 19, 2016.)

No. You are profoundly wrong Dr. Rice!

In fact I detailed how wrong you are three years ago. Perhaps you didn’t read my daily brief entitled, “Technology is Not Neutral!” You may read it below…

Larry Ferlazzo invited me to share a vision of computers in education for inclusion in his Classroom Q&A Feature in Education Week. The text of that article is below.

You may also enjoy two articles I published in 2008:

  1. What’s a Computer For? Part 1 – It all depends on your educational philosophy
  2. What’s a Computer For? Part 2 – Computer science is the new basic skill

Technology is Not Neutral

Educational computing requires a clear and consistent stance
© 2013 Gary S. Stager, Ph.D.

There are three competing visions of educational computing. Each bestows agency on an actor in the educational enterprise. We can use classroom computers to benefit the system, the teacher or the student. Data collection, drill-and-practice test-prep, computerized assessment or monitoring Common Core compliance are examples of the computer benefitting the system. “Interactive” white boards, presenting information or managing whole-class simulations are examples of computing for the teacher. In this scenario, the teacher is the actor, the classroom a theatre, the students the audience and the computer is a prop.

The third vision is a progressive one. The personal computer is used to amplify human potential. It is an intellectual laboratory and vehicle for self-expression that allows each child to not only learn what we’ve always taught, perhaps with greater efficacy, efficiency or comprehension. The computer makes it possible for students to learn and do in ways unimaginable just a few years ago. This vision of computing democratizes educational opportunity and supports what Papert and Turkle call epistemological pluralism. The learner is at the center of the educational experience and learns in their own way.

Too many educators make the mistake of assuming a false equivalence between “technology” and its use. Technology is not neutral. It is always designed to influence behavior. Sure, you might point to an anecdote in which a clever teacher figures out a way to use a white board in a learner-centered fashion or a teacher finds the diagnostic data collected by the management system useful. These are the exception to the rule.

While flexible high-quality hardware is critical, educational computing is about software because software determines what you can do and what you do determines what you can learn. In my opinion the lowest ROI comes from granting agency to the system and the most from empowering each learner. You might think of the a continuum that runs from drill/testing at the bottom; through information access, productivity, simulation and modeling; with the computer as a computational material for knowledge construction representing not only the greatest ROI, but the most potential benefit for the learner.

Piaget reminds us ,“To understand is to invent,” while our mutual colleague Seymour Papert said, “If you can use technology to make things, you can make more interesting things and you can learn a lot more by making them.”

Some people view the computer as a way of increasing efficiency. Heck, there are schools with fancy-sounding names popping-up where you put 200 kids in a room with computer terminals and an armed security guard. The computer quizzes kids endlessly on prior knowledge and generates a tsunami of data for the system. This may be cheap and efficient, but it does little to empower the learner or take advantage of the computer’s potential as the protean device for knowledge construction.

School concoctions like information literacy, digital citizenship or making PowerPoint presentations represent at best a form of “Computer Appreciation.” The Conservative UK Government just abandoned their national ICT curriculum on the basis of it being “harmful and dull” and is calling for computer science to be taught K-12. I could not agree more.

My work with children, teachers and computers over the past thirty years has been focused on increasing opportunity and replacing “quick and easy” with deep and meaningful experiences. When I began working with schools where every student had a laptop in 1990, project-based learning was supercharged and Dewey’s theories were realized in ways he had only imagined. The computer was a radical instrument for school reform, not a way of enforcing the top-down status quo.

Now, kindergarteners could build, program and choreograph their own robot ballerinas by utilizing mathematical concepts and engineering principles never before accessible to young children. Kids express themselves through filmmaking, animation, music composition and collaborations with peers or experts across the globe. 5th graders write computer programs to represent fractions in a variety of ways while understanding not only fractions, but also a host of other mathematics and computer science concepts used in service of that understanding. An incarcerated 17 year-old dropout saddled with a host of learning disabilities is able to use computer programming and robotics to create “gopher-cam,” an intelligent vehicle for exploring beneath the earth, or launch his own probe into space for aerial reconnaissance. Little boys and girls can now make and program wearable computers with circuitry sewn with conductive thread while 10th grade English students can bring Lady Macbeth to life by composing a symphony. Soon, you be able to email and print a bicycle. Computing as a verb is the game-changer.

Used well, the computer extends the breadth, depth and complexity of potential projects. This in turn affords kids with the opportunity to, in the words of David Perkins, “play the whole game.” Thanks to the computer, children today have the opportunity to be mathematicians, novelists, engineers, composers, geneticists, composers, filmmakers, etc… But, only if our vision of computing is sufficiently imaginative.

Three recommendations:

1) Kids need real computers capable of programming, video editing, music composition and controlling external peripherals, such as probes or robotics. Since the lifespan of school computers is long, they need to do all of the things adults expect today and support ingenuity for years to come.

2) Look for ways to use computers to provide experiences not addressed by the curriculum. Writing, communicating and looking stuff up are obvious uses that require little instruction and few resources.

3) Every student deserves computer science experiences during their K-12 education. Educators would be wise to consider programming environments designed to support learning and progressive education such as MicroWorlds EX and Scratch.

— — — — — — — — — — — — — — — — -

In addition to being a veteran teacher educator, popular speaker, journalist, author, and publisher, Gary is co-author of the bestselling book called the “bible of the maker movement in schools”, Invent To Learn — Making, Tinkering, and Engineering in the Classroom. He also leads the Constructing Modern Knowledge summer institute and is Publisher at CMK Press.

Dr. Gary Stager recently authored Intel’s Guide to Creating and Inventing with Technology in the Classroom. The piece explores the maker movement for educators, policy-makers, and school leaders.

Download a copy here.

Intel cover

Following my presentation at the March ASCD National Conference, Sarah McKibben of ASCD interviewed me for an article, If You Build It: Tinkering with the Maker Mind-Set, published in the June 2014 issue of ASCD Education Update.

As is often the case, just a few of my comments made it into the final publication. Since I responded to a number of interview questions via email, I am publishing my full interview here.  The questions posed are in green.

How would you define making? I talked to Steve Davee at the Maker Education Initiative, and he says that making is more of a mind-set. “Where things that are created by people are recognized, celebrated, and there’s a common interdisciplinary thread.”  Would you agree?

I like to say that the best makerspace is between your ears. I agree that it’s a stance that prepares learners to solve problems their teachers could never have predicted with a strong sense of confidence and competence, even if only to discover that there is much more to learn.

Seymour Papert calls the learning theory underlying the current interest in “making,” constructionism. He asserts that learn best occurs when the learner is engaged in the process of constructing something shareable.

In our book, we argue that my friend and mentor Papert, is the father the maker movement as well as educational computing.

In a webinar on your website, Sylvia Martinez said that with making, assessment is intrinsic within the materials.” That it’s more “organic, formative, and internally motivated.” If you’re working with a material like cardboard, without any technology involved (and you can’t base success on something lighting up), how do you assess learning?

First of all, it would be best to take a deep breath and not worry about assessing everything. All assessment interrupts the learning process. Even just asking, “Hey, whatcha doing?” interrupts the learning process. It is up to reasonable adults to determine an acceptable degree of interruption. Perhaps building stuff out of cardboard is just fun.

The best problems and projects push up against the persistence of reality. One could observe a student’s habits of mind. Speak with them about her goals and what she has accomplished. One could imagine thinking about the understanding of physics involved in building a structure, understanding of history in their cardboard Trojan horse, or storytelling ability.

There isn’t anything magical about technology when it comes to a teacher understanding the thinking of each student. That said, we find over and over again that in productive learning environments, kids may combine media, like cardboard, lights, and microcontrollers in interesting and unpredictable ways. The computer is part of an expansive continuum of constructive material.

It seems that there’s a wide gamut of materials in making. From cardboard to Arduinos to expensive laser cutters. You mentioned in a presentation, something about “low threshold, high-ceiling materials.” Can you describe what you mean?

Sure, Tinkering and engineering requires a dialogue with materials in which it is possible for young or inexperienced users to enjoy immediate feedback so they continue to grow as fluency increases. Think of paint and brushes in that context or programming languages, such as Scratch or MicroWorlds. Like with LEGO, simple elements or tools may be used to create infinite complexity and expressiveness.

Can you give me an example of how, for instance, a high school English teacher might bring making into the classroom?

Making real things that matter with a real potential audience. Kids should write plays, poems, newspaper articles, petitions, manuals, plus make films, compose music, etc…  We need to stop forcing kids to make PowerPoint presentations on topics they don’t care about for audiences they will never encounter. Kids have stories to tell. They should act, write, sing, dance, film those stories AND learn to write the sort of scientific, technical and persuasive writing that nearly every career demands.

At our Constructing Modern Knowledge summer institute, middle school humanities teacher, Kate Tabor of Chicago, used MicroWorlds to “make” the computer generate random Elizabethan insults. Teachers have used versions of Logo for decades to explore grammatical structure and conjugation rules by writing computer programs to generate random poetry or create the plural possessive form of a word.

Steve Davee also mentioned that a key to successful making in schools is to empower students to become the experts–to learn how to use a 3d printer on their own, for example, and to share that knowledge with others. He said that when a teacher has to be involved with a technology or material, it creates a “creative bottleneck.” On the other hand, you’ve mentioned that teachers need to tap into their own expertise to guide students. Can these two approaches coexist peacefully?

Kids are competent. I believe that teachers are competent too. I find it unfortunate that so many educators behave as if teachers are incapable of adapting to modernity.

There is a fundamental difference in stance between assuming that as a teacher I know everything as a fountain of knowledge and that the kids are smarter than me. There may be a “creative bottleneck,” but giving up on teachers or schools is an unacceptable capitulation.

Great things are possible when the teacher gets out of the way, but even greater possibilities exist when the teacher is knowledgeable and has experience they can call upon to help a kid solve a tough problem, connect with an expert, or toss in a well-timed obstacle that will cause the student encounter a powerful idea at just the right teachable moment.

Each year, teachers at Constructing Modern Knowledge construct projects that two years ago would have earned them a TED Talk and five years ago, a Ph.D. in engineering, and yet so much teacher PD is focused on compliance, textbook page turning or learning to “use the Google.”

How does making align with Piaget’s understanding, as you’ve mentioned, that knowledge is a consequence of experience?

Piaget said that knowledge is a consequence of experience. Papert said, “If you can make things with computers, then you can make a lot more interesting things and you can learn more by making them.” Both ideas serve as strong justification for making.

In a webinar, Sylvia Martinez mentioned that instead of looking at standards and creating projects around them, teachers might work backward by creating an educational experience, then filling in the standards. Do you agree with this approach? How would this look with making?

I agree with Papert that at best school teaches a billionth of a percent of the knowledge in the universe yet our entire educational system is hell-bent on arguing endlessly over which 1 billionth of a percent is important. As an educator, my primary responsibility is create a productive context for learning that democratizes access to experience and expertise while doing everything I can to make private thinking public in order to ready the environment for the student’s next intellectual development. Making is wholly consistent with this view.

As we have mechanized and standardized teaching over the past generation, teachers have been deprived of experience in thinking about thinking. Their agency has been robbed by scripted curricula, test-prep, the Common Core, and other nonsense I believe to be on the wrong side of history. As a result, they can’t help but become less thoughtful in their practice. My work is concerned with creating experiences during which teachers become reacquainted with learning in order to become more sensitive to the individual needs, passions, talents, and expertise of each student. The emerging tools of the Maker Movement provide an exciting basis for such experiences.

As I said at ASCD, you can’t teach 21st Century learners, if you haven’t learned this century.

The future viability of public education is dependent on a system of creative competent educators trusted to provide rich learning experiences for children.

CMK Founder Gary Stager, Ph.D. gave a presentation in November 2012 about the philosophy and practice of Constructing Modern Knowledge. The following video is a recording of that presentation about the institute.

Click here to register for Constructing Modern Knowledge 2013 today!

CMK 2013

 

Constructing Modern Knowledge may be the most important work of my career. For five years, we have demonstrated the competence and creativity of educators who spend four days of their summer vacation learning to learn in the digital age. I marvel at the complexity, sophistication and ingenuity illustrated by the educator’s projects created at Constructing Modern Knowledge. It is not an exaggeration to say that several of the projects created at CMK 2012 would have earned the creator(s) a TED Talk two years ago and an MIT Ph.D. five years ago.

CMK remains committed to creating a space where educators remake themselves by engaging in personally meaningful projects and learn through firsthand experience. It is NOT a conference. It is a samba school, laboratory, playground, library, maker space, film studio, atelier or workshop filled with people and objects to think with.

Constructing Modern Knowledge is a reflection of each participant. Some alums will say that CMK is about being at the forefront of the Maker movement, or about the Reggio Emilia approach, or about creativity, or robotics or filmmaking, or history, or school reform, or about S.T.E.M., or music composition or collaboration or visiting the MIT Media Lab. CMK is all of those things and what each participant makes of the experience.

Our remarkable faculty supports the learning of each participant and our guest speakers share a daily dose of inspiration. Given the diversity of the participants and the enormous range of projects created, CMK means different things to different people. So, what is CMK about?

Constructing Modern Knowledge is about:

  • Jamming on a cupcakeIMG_1682
  • Looking up
  • Looking in
  • Cool tools
  • Floating above the classroom
  • Bringing Edison back to life
  • Reinventing yourself
  • Painting a piano
  • Programming random Shakespearean insults
  • Giving Lego a ukulele lesson
  • Teaching a robot to use Twitter
  • Becoming the next great YouTube filmmakersmiling learners cropped
  • Getting lost in the flow
  • Learning to solder
  • Scoring a cartoon
  • Snapping lots of photos
  • Creating an animation
  • Having lunch with your hero
  • Sneaking around the MIT media lab
  • Feeling smart
  • Time lapse photography
  • Laughing really hard
  • Charging your iPhone by peddling a bike
  • Tinkering
  • Being a historian8022636190_3d5593b600_o
  • Working alone
  • Working in teams
  • Cool tools
  • Aluminum foil
  • Understanding astrophysics through dance
  • Being silly
  • Being serious
  • A digital butler keeping your beer cold
  • Engineering
  • Secret ice cream
  • Measuring your whiffle bat swing
  • Manch Vegas
  • Brightening a Rwandan child’s day
  • Flow
  • Fixing the future with air-curing rubber
  • Makey Makey
  • Conquering the geometry of islamic tiles
  • Conductive paint
  • Mathematical thinkingworking on floor cropped
  • Designing a video game
  • Making friends
  • Expanding your personal learning network
  • Feeling smart
  • Feeling foolish
  • Confusion
  • Finding science in your art and electronics in your peanut butter
  • Satisfaction
  • Scratch
  • Learning to learn
  • Bursting balloons
  • The Reggio Emilia Approach8023331155_8565f7ff3f_o
  • Clarity
  • Turning trash into treasure
  • Reading
  • MicroWorlds
  • Constructionism
  • Computer graphics
  • Storytelling
  • The 100 languages of children
  • Chatting with Marvin Minsky
  • Ingenuity
  • Choreographed t-shirtsResnick and Minsky
  • Turtle Art
  • Coffee with a legend
  • Writing
  • Progressive education
  • Creativity unleashed
  • Computing
  • An amazing faculty
  • Powerful ideaspitts2
  • Changing the world
  • A smile-controlled robot
  • Exploring linguistic patterns of the 1940s
  • Challenging yourself
  • Sounding like Eleanor Roosevelt
  • Brazilian churascaria
  • Wearable computing
  • Whimsy
  • Never finding the pool
  • Raising standards
  • Blowing your mind
  • MIDI
  • Conversation
  • Re-imagining educationx 5948920464_208e89e344_o
  • Expanding your comfort zone
  • Being super awesome
  • Taking off your teacher hat
  • Putting on your learner hat
  • Action!

Join the learning adventure with us July 9-12, 2013 in Manchester, NH!

Register today!

Download a printable brochure for Constructing Modern Knowledge 2013

 

 

 

Larry Ferlazzo invited me to share a vision of computers in education for inclusion in his Classroom Q&A Feature in Education Week. The text of that article is below.

You may also enjoy two articles I published in 2008:

  1. What’s a Computer For? Part 1 – It all depends on your educational philosophy
  2. What’s a Computer For? Part 2 – Computer science is the new basic skill

Technology is Not Neutral
Educational computing requires a clear and consistent stance

Gary S. Stager, Ph.D.
constructingmodernknowledge.com

There are three competing visions of educational computing. Each bestows agency on an actor in the educational enterprise. We can use classroom computers to benefit the system, the teacher or the student. Data collection, drill-and-practice test-prep, computerized assessment or monitoring Common Core compliance are examples of the computer benefitting the system. “Interactive” white boards, presenting information or managing whole-class simulations are examples of computing for the teacher. In this scenario, the teacher is the actor, the classroom a theatre, the students the audience and the computer is a prop.

The third vision is a progressive one. The personal computer is used to amplify human potential. It is an intellectual laboratory and vehicle for self-expression that allows each child to not only learn what we’ve always taught, perhaps with greater efficacy, efficiency or comprehension. The computer makes it possible for students to learn and do in ways unimaginable just a few years ago. This vision of computing democratizes educational opportunity and supports what Papert and Turkle call epistemological pluralism. The learner is at the center of the educational experience and learns in their own way.

Too many educators make the mistake of assuming a false equivalence between “technology” and its use. Technology is not neutral. It is always designed to influence behavior. Sure, you might point to an anecdote in which a clever teacher figures out a way to use a white board in a learner-centered fashion or a teacher finds the diagnostic data collected by the management system useful. These are the exception to the rule.

While flexible high-quality hardware is critical, educational computing is about software because software determines what you can do and what you do determines what you can learn. In my opinion the lowest ROI comes from granting agency to the system and the most from empowering each learner. You might think of the a continuum that runs from drill/testing at the bottom; through information access, productivity, simulation and modeling; with the computer as a computational material for knowledge construction representing not only the greatest ROI, but the most potential benefit for the learner.

Piaget reminds us ,“To understand is to invent,” while our mutual colleague Seymour Papert said, “If you can use technology to make things, you can make more interesting things and you can learn a lot more by making them.”

Some people view the computer as a way of increasing efficiency. Heck, there are schools with fancy-sounding names popping-up where you put 200 kids in a room with computer terminals and an armed security guard. The computer quizzes kids endlessly on prior knowledge and generates a tsunami of data for the system. This may be cheap and efficient, but it does little to empower the learner or take advantage of the computer’s potential as the protean device for knowledge construction.

School concoctions like information literacy, digital citizenship or making PowerPoint presentations represent at best a form of “Computer Appreciation.” The Conservative UK Government just abandoned their national ICT curriculum on the basis of it being “harmful and dull” and is calling for computer science to be taught K-12. I could not agree more.

My work with children, teachers and computers over the past thirty years has been focused on increasing opportunity and replacing “quick and easy” with deep and meaningful experiences. When I began working with schools where every student had a laptop in 1990, project-based learning was supercharged and Dewey’s theories were realized in ways he had only imagined. The computer was a radical instrument for school reform, not a way of enforcing the top-down status quo.

Now, kindergarteners could build, program and choreograph their own robot ballerinas by utilizing mathematical concepts and engineering principles never before accessible to young children. Kids express themselves through filmmaking, animation, music composition and collaborations with peers or experts across the globe. 5th graders write computer programs to represent fractions in a variety of ways while understanding not only fractions, but also a host of other mathematics and computer science concepts used in service of that understanding. An incarcerated 17 year-old dropout saddled with a host of learning disabilities is able to use computer programming and robotics to create “gopher-cam,” an intelligent vehicle for exploring beneath the earth, or launch his own probe into space for aerial reconnaissance. Little boys and girls can now make and program wearable computers with circuitry sewn with conductive thread while 10th grade English students can bring Lady Macbeth to life by composing a symphony. Soon, you be able to email and print a bicycle. Computing as a verb is the game-changer.

Used well, the computer extends the breadth, depth and complexity of potential projects. This in turn affords kids with the opportunity to, in the words of David Perkins, “play the whole game.” Thanks to the computer, children today have the opportunity to be mathematicians, novelists, engineers, composers, geneticists, composers, filmmakers, etc… But, only if our vision of computing is sufficiently imaginative.

Three recommendations:

1) Kids need real computers capable of programming, video editing, music composition and controlling external peripherals, such as probes or robotics. Since the lifespan of school computers is long, they need to do all of the things adults expect today and support ingenuity for years to come.

2) Look for ways to use computers to provide experiences not addressed by the curriculum. Writing, communicating and looking stuff up are obvious uses that require little instruction and few resources.

3) Every student deserves computer science experiences during their K-12 education. Educators would be wise to consider programming environments designed to support learning and progressive education such as MicroWorlds EX and Scratch.

 

Come see Gary Stager speak at the forthcoming events!

Gary with his boss Caine, of Caine's Arcade fame

November 5, 2012
Keynote speaker
16th Annual Innovative Learning Institute
Norman, Oklahoma

November 6, 2012
Workshop Leader – Digital Reggio
NAEYC Annual Conference
Atlanta, Georgia

November 7, 2012
Featured speaker
ISACS Annual Conference
Louisville, Kentucky

November 14, 2012
Keynote speaker
Three Rivers Educational Technology Conference
Pittsburgh, Pennsylvania

November 28, 2012
Multiple presenter
Christa McAuliffe Technology Conference
Manchester, New Hampshire

Watch presentations by Gary Stager

November 29, 2012
Keynote speaker
Illinois Educational Technology Conference
Springfield, Illinois

December 6, 2012
Keynote speaker
RCAC 2012 Conference
London, Ontario

January 9, 2013
Keynote speaker
New keynote = The Creative Technology Revolution You Can’t Afford to Miss
Technology Leadership Institute
Briarcliff Manor, NY

January 27-28, 2013
Presenter
Educon 2.5
Philadelphia, Pennsylvania

Australia/New Zealand
Late May – Early June 2013

Constructing Modern Knowledge
July 9-12, 2013

If you wish to have Gary Stager lead PD at your school or speak at your event, contact him here

A list of workshop and keynote address topic may be found here.

Few authors, activists, intellectuals or teachers move me like Jonathan Kozol. For nearly a half century, Kozol has given voice to the optimistic, playful, scared, sad and hungry children in our society. He spends time with the children most of us never think about and confronts us with our spiritual beliefs and the policies that most acutely affect the least of us in society. To meet a man with the greatness, humility, decency and literary genius of Kozol would be a miracle. To be able to work with him is a rare gift. To have him introduce me at Constructing Modern Knowledge 2011 as “one of my oldest friends in education” was a blessing I will never forget. Watch his CMK11 talk.

After far too long of a hiatus, Jonathan’s latest book, “Fire in the Ashes: Twenty-Five Years Among the Poorest Children in America,” is out today! I have read the galleys and the book is riveting, profound, tragic, hopeful and beautifully written. You should read it AND buy a copy for a friend or colleague. Click to buy from Amazon.com.


Jonathan Kozol & Gary Stager at CMK 2011

This school year, Constructing Modern Knowledge will expand beyond its unique summer institute (July 9-12, 2013 – Manchester, NH) to offer some exciting new learning opportunities for learners and parents. The first event by Constructing Modern Knowledge Productions is in collaboration with my colleagues at the Willows Community School in Culver City, California.

On September 10th at 7:00 PM, The Willows Community School will host An Evening with Jonathan Kozol, Acclaimed Author and Educational Activist. Due to the generosity and public mindedness of the school, the event is free and open to the public! Reservations are required via the web site.

At this event, Kozol will speak and sign his new book, Fire in the Ashes: Twenty-Five Years Among the Poorest Children in America. I hope you will join us for this very special evening!

Imagine a place where a diverse population learns more in a few days than they otherwise would in years. Imagine a space where tinkering is encouraged and personally meaningful project development is supported by an expert faculty. Imagine a learning environment filled with books, art supplies, robotics materials, electronics, computers, cameras, musical instruments and creativity software. Imagine learners having the luxury of time required to realize their objectives and opportunities to work with some of the world’s most creative thinkers. Imagine learners making films, programming computers, building simulations, constructing robots, sewing wearable computers, creating animations and designing video games. Imagine a once-in-a-lifetime field trip to a see the future.

Now, imagine that these learners are professional teachers. This is not a fantasy. It’s called Constructing Modern Knowledge, a summer institute for educators celebrating its fifth anniversary this July 9-12 in Manchester, New Hampshire. Educators from China, Costa Rica and Australia join Americans from across the USA at next month’s event.

Constructing Modern Knowledge is built upon the simple proposition that you cannot adequately teach in the 21st Century, if you have not learned in this Century with the modern materials and technology that amplify human potential. How is a teacher or school administrator supposed to resource a classroom or teach in a way that takes advantage of the rich opportunities beyond the classroom walls without awareness and personal knowledge of what it feels like to learn with the tools of their age? Constructing Modern Knowledge participants are encouraged to take off their teacher hat and become reacquainted with their learner hat.

Even the most creative educators need a spa day for their mind where their passion, curiosity and ambition can be reignited. Constructing Modern Knowledge not only creates a fantastic laboratory for tinkering, inventing and creating, but it offers opportunities for educators to learn with their heroes. Constructing Modern Knowledge is a chance for educators to reinvent themselves.

Civil rights icon & best-selling author Jonathan Kozol visits with teachers reinventing the phonograph

In addition to an amazing faculty of gifted educators and pioneers, Constructing Modern Knowledge features remarkable guest speakers who spend time learning with and mentoring participants.

This year’s guest speakers include:

  • Casey Neistat – award-winning DIY filmmaker with millions of Web views and star of his own HBO series, The Neistat Brothers.
  • Mark Frauenfelder – Editor-in-Chief of Make Magazine, Founder of BoingBoing.net and author of Made By Hand: Searching for Meaning in a Throwaway World. Frauenfelder is at the forefront of the maker movement sweeping the globe.
  • Dr. Leah Beuchley – MIT Media Lab professor and Lilypad Arudino (wearable computing construction kits) inventor
  • Dr. Lilian Katz – Veteran educational researcher, early childhood specialist and proponent of “the project approach” to learning
  • Super Awesome SylviaTen year-old Web phenom, maker, tinkerer, learner, teacher and role model

Our “field trip” to Boston will begin with a reception at the world-famous MIT Media Lab, where much of the future is being invented.

On top of all that, Dr. Marvin Minsky, one of the world’s greatest living scientists, inventors and provocateurs will lead his fifth annual “fireside chat.” This year, Dr. Minsky will also be a participant in Constructing Modern Knowledge!

According to Wikipedia

Isaac Asimov described Minsky as one of only two people he would admit were more intelligent than he was, the other being Carl Sagan.[4] Ray Kurzweil has referred to Minsky as his mentor.”

Participants will have the opportunity to work on projects with or alongside of Marvin Minsky and our other distinguished guests! Previous CMK speakers have included Jonathan Kozol, Alfie Kohn, Deborah Meier, Derrick Pitts, Lella Gandini, James Loewen and Mitchel Resnick.

Constructing Modern Knowledge is by its very nature an intimate professional learning event, but registration is still possible. Parents and citizens can certainly send their favorite teacher to “camp” this summer too. They’ll come back to school with a new bag of tricks and inspired to help students invent their futures.


Check out the learning stories from last year’s institute, teacher resources and videos at This is What Learning Looks Like!