The irony could cause whiplash. Over the past thirty years, the EdTech community expended sufficient energy to colonize Mars fighting the idea of teaching children to program computers. I cannot think of another single example in education where so much effort was invested in arguing against children learning something, especially ways of knowing and thinking so germane to navigating their world. Now, the very same folks responsible for enforced ignorance, disempowerment, and making computing so unattractive to children are now advocating “Computer Science for All.”*

There seems to be little consensus on what CS4All means, few educators prepared to teach it, no space in the schedule for a new course of study, and yet a seemingly unanimous desire to make binary, algorithm, and compression first grade spelling words. The sudden interest in “coding” is as interested in the Logo community’s fifty years of accumulated wisdom as Kylie Jenner is interested in taking Ed Asner to St. Barts.

So, amidst this morass of confusion, turf battles, and political posturing, well intentioned educators resort to puzzles, games, and vocabulary exercises for say, an hour of code.

I wish I had 0101 cents for every educator who has told me that her students “do a little Scratch.” I always want to respond, “Call me when your students have done a lot of Scratch.” Coding isn’t breaking a code like when you drunken insurance salesman go to an Escape Room as a liver bonding exercise. The epistemological benefit of programming computers comes from long intense thinking, communicating your hypotheses to the computer, and then either debugging or embellishment (adding features, seeking greater efficiency, decorating, testing a larger hypothesis).

Fluency should be the goal. Kids should be able to think, write, paint, compose, and dance with code. I recently met a team of sixth grade girls who won a contest for creating the “best app.” It was pretty good. I asked, “What else have you programmed?” and received blank stares. When I asked, “What would you like to program next?” the children all turned to look at the teacher for the correct answer. If the kids were truly learning to program, they would be full of independent ideas for what to do next.

Children have a remarkable capacity for intensity and computer programming is an intellectual and creative outlet for that intensity. When I learned to program in a public middle school in 1975, I felt smart for the first time in my life. I could look at problems from multiple angles. I could test strategies in my head. I could spend days thinking of little more than how to quash a bug in my program. I fell in love with the hard fun of thinking. I developed habits of mind that have served me for more than four decades.

So, for schools without a Mr. Jones to teach a nine-week mandatory daily computer programming class for every seventh grader, I have a modest proposal that satisfies many curricular objectives at once.

Whether your goal is literacy, new literacy, computer literacy, media literacy, coding, or the latest vulgarity, close reading, my bold suggestion offers a little something for everyone on your administrative Xmas list.

Give the kids a book to read!

That’s right. There are two very good books that teach children to program in Scratch using a project-approach. The books are completely accessible for a fifth grader. (or older) Here’s what you do.

  • Buy a copy of one of the recommended books for each student or pair of students.
  • Use the book as a replacement text.
  • Ask the students to work through all of the projects in the book.
  • Encourage kids to support one another; perhaps suggest that they “ask three before me.”
  • Celebrate students who take a project idea and make it their own or spend time “messing about” with a programming concept in a different context.

There is no need for comprehension quizzes, tests, or vocabulary practice since what the students read and understand should be evident in their programming. Kids read a book. Kids create. Kids learn to program.

There is a growing library of Scratch books being published, but these are the two I recommend.

Super Scratch Programming Adventure! : Learn to Program by Making Cool Games is a graphic novel filled with Scratch projects.

Scratch For Kids For Dummies by Derek Breen is a terrific project-based approach to learning Scratch.

If per chance, thick books scare you, there are two excerpted versions of Derek Breen’s Scratch for Kids for Dummies book, entitled Designing Digital Games: Create Games with Scratch! (Dummies Junior) and Creating Digital Animations: Animate Stories with Scratch! (Dummies Junior). Either would also do the trick.

Shameless plug

Sylvia Martinez and I wrote a chapter in this new book, Creating the Coding Generation in Primary Schools.

* There are a plethora of reasons why I believe that Computer Science for All is doomed as a systemic innovation, but I will save those for another article.

Veteran educator Dr. Gary Stager is co-author of Invent To Learn — Making, Tinkering, and Engineering in the Classroom and the founder of the Constructing Modern Knowledge summer institute. Learn more about Gary here.

What I Did on My Three Summer VacationsBy Brian Silverman
Illustrated by Peter Reynolds

Previously published in Mathematics and Informatic Quarterly (in Bulgaria) prior to this version appearing in the Fall 1998 issue of Logo Exchange. Volume 17. Number 1.

We finally did it. We made it through the maze in Montreal’s Old Port in eleven minutes. There’s a really good chance that our time is the all-time record!

It all started a few years ago when my daughter, Diana and I were biking and found ourselves in Montreal’s Old Port. There was a new attraction called S.O.S. Labyrinthe, that promised a pirate adventure. It turned out to be a giant indoor maze in an old warehouse building with a handful obstacles with a pirate theme. The “pirates” were kids on roller blades providing help to the desperately lost and confusion to the rest of us.

The maze is a twenty-by-eighty grid of about two metre squares. The walls are made of thick plastic sheets hung between poles that are placed at the grid points. Four small sections of the maze have been built up to resemble a ship’s bridge, an engine room, a cargo hold, and lockers for the crew. These four checkpoints have hidden stampers to stamp a card received when you enter the maze.This card is also time-stamped when you first enter then maze and again when you leave.

When Diana and I first tried we got lost almost immediately. It took us about an hour and twenty minutes to find our way out and get all the stamps we needed. Despite being lost most of the time we enjoyed it so much that we went back the following week. This time we brought my son Eric along because he’d missed the first time through. The second time, to avoid getting lost, we decided to follow a set of simple rules that, as any little robot will tell you, can help to get you out of most mazes.

The rules are:

  1. turn right whenever you can
  2. turn around when you reach a dead end.

That’s all there is to it and it actually works. We followed the rules and managed to make it through the maze in about twenty two minutes. When we finished the pirate behind the desk put our names on the board as the group that had the best time of the day. He mentioned in passing that it was a better time than he sees most days.

The challenge at this point was obvious. Our goal was to get the best time ever. We only had to figure out how. I had a plan that I thought would be pretty simple. However, as is almost always the case, it didn’t turn out to be as simple as I’d initially imagined. The plan was this: Go through the maze twice. The first time through bring along a little computer to record our path. Then go home, draw a map, find the best route and go back the following day and go through running as fast as we can.

There were a couple of immediate problems. The first one was pretty easy to resolve. How could we be sure that the maze didn’t change on us between the first run and the second? (The plastic panels are moved on a regular basis to keep the maze from staying the same.) A couple of phone calls and oblique questions later, we’d found out that the maze is only changed once a week, on Thursday night. The second immediate problem was trickier to resolve. Our plan required little computers to record our path. We didn’t have any little computers. Even if we did we wouldn’t know how to make them record paths.

My friends at MIT had little computers. We’d been working for a few years on making “programmable LEGO bricks”. At that time we were at the point where we’d had a couple of prototypes that had worked for a bit but none of them were reliable enough for the task. However as a result of a sort of spinoff of that project there were some little computer boards around that weren’t much bigger than a deck of cards. I asked my friend Randy Sargent if I could borrow one. He mailed it to me and I had it within a few weeks. Unfortunately by then the season was over and the project would have to wait until the next summer.

During the course of the winter a couple of things happened. One was that I had a lot of fun programming the little computer board I’d received. Over Christmas I played with making a tiny version of Logo. By New Year’s we had Logo programmable LEGO robots that didn’t need to be attached to a big computer. At the same time Randy had been working on perfecting a new programmable brick. By the following summer these came together and we had a programmable brick and a logo program for saving information about where in the maze we’d been.

Little computers are pretty stupid. We would have liked to have been able to just carry one along and have it remember where it had been. But the little computer wasn’t up for the task. What we did instead was attach a couple of pushbuttons to it. One to click the number of “squares” we’d gone forward, the other to click in the amount that we’d turned at each corner.

The summer mostly slid away before we got around to trying a second run. When we did get around to it, it was just Eric and me. Before getting into the maze we’d attached the brick to his belt, run some wires up his shirt and down the sleeves to the pushbuttons in his hands. Unless you were looking hard you wouldn’t have noticed anything suspicious. We scoped out the maze counting out loud on the straightaways and yelling out directions at the corners. People looked at us a bit strangely in general and were particularly confused and curious when we had to bring out the brick for minor adjustments.

We didn’t do too well on that round. The brick started misbehaving about three quarters of the way through. And even if it hadn’t, the recorded data had lots of mistakes in it. With a lot of guessing and processing we were able to construct about a quarter of the map but no more. Since it was late summer we gave up again for the year figuring we’d pick it up again the following year.

The next winter was a good one for programmable bricks. When we did the second run there were only five working bricks in the world and even those five needed a fair amount of babysitting. By the next summer, there had been several new iterations of the design (largely the work of Fred Martin) resulting in dozens of working bricks that were solid enough that we wouldn’t have to worry too much about hardware failures for the next round.

Also, during the winter there was plenty of time to think about what went wrong the previous summer. The main problem was that mistakes in clicking the buttons led to so much distortion in the map that it was completely useless. The maze is so big, (more than a thousand straightaways and turns), that it’s impossible to do the kind of recording that we did without making mistakes. We thought a bit about eliminating mistakes but decided instead to run the experiment with several programmable bricks simultaneously, do the recording several times separately then regroup and compare results.

As it turns out, Randy and another friend, Carl Witty were planning to come to Montreal towards the end of the summer to show off their robots at an artificial intelligence conference. They arrived with a car full of computers, tools, and robot parts. Their robots all come with cameras connected to electronics that can discriminate colors. Their demos included robots chasing balls and each other at high speeds. It seemed only natural to get them involved in the third round.

We had a lot of discussion about whether or not we could use the vision systems they had in their robots for more automatic data gathering. We decided not to because even if we could resolve all the computer issues, we weren’t sure that we had enough batteries for all of the needed electronics for the time it’d take. We did decide, however, that since they had brought along several miniature cameras we’d take a video record of first trip through and use that to help interpret the data we’d get from the computers.

Carrying a camera around a maze really didn’t seem subtle enough. Instead we took the camera and sewed it into a hat with only the lens sticking out the front. The camcorder fit neatly in a backpack. By the time we were ready to go, Carl, Randy and I each had a programmable brick rubber banded to our belts and Eric had a camera in his hat. The data gathering run took about two hours and was pretty boring. The bricks kept disagreeing with each other but we ignored this because we decided to sort it all out later. Eric, originally worried that he’d attract too much attention with the camera ended up not being able to convince anyone that he actually had one.

We brought the electronics home, dumped the data to three separate laptop computers and then spent an evening that didn’t quite turn into an all nighter trying to make some sense of it. For hours there was Randy, Carl, and I each with our own computer bouncing sequence numbers, grid locations, and reports of similarities and differences in data between us. My wife Erlyne and the kids watched for some of this, enjoyed part of the video but abandoned us when it seemed that we’d really fallen off the deep end. We persisted and after spending some time getting a feel for the method to the madness we decided to systemically play through the video noting when everything looked to be working and stopping the tape and fudging when it didn’t. Our stamina ran out before the tape did and we gave up for the night with about three quarters of the map in place.

The next morning, we all felt refreshed and raring to go. In less that two hours the printer was churning out copies of a complete maze map . We were about to set off when Eric asked why each of us had to go to get stamps at each of the places rather than splitting up the job. We realized pretty quickly that he had a point. There was a rule against going through the walls. There wasn’t a rule against the cards with the stamps going through the walls. It took us about a half an hour of staring at the map and thinking to come up with a plan that involved three teams and three relay points to pass the cards along like a baton in a relay race. Eric and I had the first stretch, passed the cards to Randy and then headed off to where Randy would pass them back after having met Carl twice along the way.

It all worked like clockwork. The maps were accurate, the plan workable. Eric and I had the first stamp in less that two minutes and found Randy in another two. When we called him through the plastic wall he didn’t answer but his hand appeared. He said later that a pirate was standing right beside and he was trying to not attract any attention. After the handoff we headed to the final relay point where we met up with Carl and got the cards through the wall from Randy. From there it was just a quick run to the end to get the last time stamp. It had taken eleven minutes, much less time than we had imagined possible.

We went to see the pirate at the desk. The board of daily winners wasn’t around any more. We showed him our card that confirmed that we’d done it in eleven minutes. He said that if we did it that fast we must have cheated. Maybe it’s true. Throwing that much technology at a problem may be cheating. On the other hand, it may just be another way of solving it


About the author

Since the late 1970s, Brian Silverman has been involved in the invention of learning environments for children. His work includes dozens of Logo versions (including LogoWriter & MicroWorlds), Scratch, LEGO robotics, TurtleArt and the PicoCricket. Brian is a Consulting Scientist to the MIT Media Lab, enjoys recreational math, and is a computer scientist and master tinkerer. He once built a tictactoe-playing computer out of TinkerToys. Brian is a longtime faculty member of the Constructing Modern Knowledge summer institute.

You can also visit Brian’s Wikipedia page here.

About the illustrator

Peter H. Reynolds co-founded FableVision, Inc., in 1996 and serves as its Chairman. Mr. Reynolds produces award-winning children’s broadcast programming, educational videos and multimedia applications at FableVision, Inc. He served as Vice President and Creative Director of Tom Snyder Productions for 13 years.

He is also an accomplished writer, storyteller and illustrator, and gets his enthusiasm and energy to every project he creates. His bestselling books about protecting and nurturing the creative spirit include The Dot, Ish, and So Few of Me (Candlewick Press). His cornerstone work, The North Star (FableVision), The SugarLoaf book series (Simon & Schuster), My Very Big Little World and The Best Kid in the World, are the first of Peter’s many books about an irrepressible little girl who sees the world through creative-colored glasses. He has recently co-authored several popular books with his twin brother, Paul.

The film version of The Dot (Weston Woods) went on to win the American Library Association’ (ALA’s) Carnegie Medal of Excellence for the Best Children’s Video of 2005 and the film version of Ish was announced as one of ALA’s 2006 Notable Children’s Videos. His other series of original, animated film shorts, including The Blue Shoe, Living Forever and He Was Me, have won many awards and honors around the globe.

Peter’s award-winning publishing work also includes illustrating New York Times1 Best Seller children’s book, Someday (Simon & Schuster), written by Alison McGhee – a “storybook for all ages.” He illustrated the New York Times best-selling Judy Moody series (Candlewick) written by Megan McDonald, Eleanor Estes’ The Alley and The Tunnel of Hugsy Goode, Judy Blume’s Fudge series (Dutton), and Ellen Potter’s Olivia Kidney books

Peter Reynolds was a guest speaker at the 1st and 10th annual Constructing Modern Knowledge summer institute.

Bob Tinker at CMK 2008

The world lost a remarkable educator on June 22, 2017 when Dr. Robert Tinker passed away at the age of 75.

If your students have ever worked on a collaborative online project, taken a virtual class, used a science probe, played The Zoombinis, or used any terrific materials created by TERC or The Concord Consortium, Bob is the reason why.

A gifted scientist, Bob was brilliant, kind, patient, joyous, and generous. Like our mutual friend, Seymour Papert, Bob spent his life helping others to learn and love science and math just as much as he did. He possessed the rare empathy that allowed him to wonder why others might not learn this or that as naturally or easily as he did. Rather than blame or shame learners, Bob designed tools not to teach, but for learning. At Seymour Papert’s memorial celebration, Tod Machover quoted Papert as saying, “Everyone needs a prosthetic.” Bob Tinker was in the business of creating remarkable prosthetics useful for embracing the wonders of scientific inquiry.

I just learned that Bob fought on the front lines of the civil rights movement in Alabama, just as Papert did in South Africa. This news came as no surprise.

“My Dad was the probably the smartest man I knew (MIT PhD), and he decided to pass on earning a big salary with a Defense Contractor in order to positively impact change. With my mom at his side, during the civil rights movement they moved to the South to teach at a University that could hardly afford textbooks. They marched in dangerous areas. They worked to expose climate change. They personally funded the arts and those less fortunate. They then built the two largest science/match educational non-profits in the USA. The two NGOs employ hundreds, have trained thousands of teachers, and have educated millions of kids.” (Bob’s daughter, Facebook, June 22)

A life well lived… Online, Bob’s friends remember him as a mensch.

Long before politicians and hucksters began alarming the citizenry about the need to teach Science, Technology, Engineering, and Mathematics (S.T.E.M.) subjects as a vulgar ticket to careers, real or imagined, Bob Tinker created tools and technology that not only raised the standards for student participation in those fields, but did so in a progressive constructivist context. Not only didn’t his approach to S.T.E.M. exceed empty rhetoric and vocabulary acquisition, Bob’s work brought a broad spectrum of modern scientific domains to life in classrooms. Biology, chemistry, physics, computer science, earth science, electronics, engineering, and computational thinking were all in the mix.

Dr. Tinker delighting in a teacher’s scientific discovery

One could make a compelling argument that Bob Tinker is the father of S.T.E.M. However, I think of him as the Thomas Edison of S.T.E.M. Beyond his remarkable academic preparation, Bob was not resigned to a life of writing pretentious papers to be published in overpriced conference proceedings read by six colleagues. While there was nobody better at writing successful grant proposals, Bob and his colleagues had a stunning track record of “commercializing” their ideas. At both TERC, where he was Director of Educational Technology and The Concord Consortium he founded, Bob Tinker personified Edison’s notion of research AND development. An idea could be tested, refined, manufactured, and distributed in a reasonable timeframe. Unlike so many researchers cloistered in university departments and think tanks, Bob and his colleagues turned ideas into actual products enjoyed by millions of students around the world. Like Edison, Dr. Tinker didn’t work alone. He assembled and led an incredibly competent band of “muckers” who could bring impossible ideas to life.

Those products were sound, timely, reliable, open-ended, fun and teachable without succumbing to “teacher proofing” or dumbing down the science. There was never anything condescending about Dr. Tinker’s prolific work. Bob’s considerable charm and passion undoubtedly played a role in the creation of public/private partnerships, including with The National Geographic and Broderbund, required to successfully distribute his inventions to classrooms and homes everywhere. Bob was also a pioneer in making powerful software tools freely available online. He also preceded the DIY ethos of the maker movement by advocating for the creation of one’s own science probes in 2007!

In Bob’s world, there was no reason to add an A for Arts to S.T.E.M., since the doing of science and mathematics was itself, beautiful, wondrous, playful, creative, and relevant. Papert and Tinker shared a desire for children to be mathematicians and scientists, rather than being taught math or science. They both worked to make complexity possible by making the frontiers of mathematics and science accessible and usable by children. Bob went a step further and created programs where students could collaborate with scientists online as colleagues back in 1989, two years before the World Wide Web was released to the public. My fourth grade class participated in the National Geographic Kids Network Acid Rain project back in 1990.

In an interview Bob said:

“I became inspired to teach by tutoring two kids for two years in a black college in the South. It was the best education (for me!) anyone could design because it showed me exactly how science education could reach far more learners. I’ve dedicated my life to realizing that dream and it’s been wonderful working with smart people who share that dedication. There’s always been a sense of mission. We make important advances that will affect kids all over the world and—this was my initial motivation—bring cutting-edge educational resources to under-resourced kids.”

On a personal note

I do not remember exactly when I first met Bob Tinker, but it was at a conference approximately thirty years ago. Back then, the smartest people in the world spoke at educational computing conferences. I was familiar with his work prior to meeting him. In fact, I was a big fan of The Science Toolkit, distributed by home recreational software publisher, Broderbund. The Science Toolkit was a low-cost ($79 master module with two probes and $39 add-on sets) software package with external sensors that plugged into the joystick port of a microcomputer to allow children to conduct, measure, and record science experiments at home. This was an example of what Bob pioneered and called Micro-Based Labs (MBL).

Check out the video clip from the Christmas 1983 episode of the PBS show Computer Chronicles. Note how clean and simple the software it is and compare it some of the probeware software sold to schools today.

Prior to meeting Bob, I owned my own Science Toolkit. I was especially pleased with myself for figuring out how to program LogoWriter to read data from the kit’s probes without using the accompanying software. I could now write my own programs for collecting data, graphing it, and controlling my own experiments. I nailed using the light sensor, but my temperature data I received wasn’t particularly accurate. I eventually rationalized this as being the fault of the sensor or based on the limitations of the Science Toolkit, despite the fact that the probe worked just fine with the software provided. 

Not much time passed before I ran into Bob Tinker in one of those “V.I.P.” receptions, in the crummy “suite” of the conference chair in the forgettable hotel where the conference was being held. As I told Bob about my struggles with temperature data, he grabbed a napkin and wrote calculus formulas across all of the quadrants of the unfolded napkin. Bob mentioned that reading the temperature data was non-linear, a concept this C- science student could vaguely comprehend. While I never figured out how to translate the napkin math to a working LogoWriter program, Bob’s good cheer, gentle mentoring, and generosity reminded meow something I wrote in an essay a couple of years ago, “Math teachers often made me feel stupid; mathematicians never did.”

Maria Knee & Bob Tinker at CMK 2008

When I started the Constructing Modern Knowledge institute for educators ten years ago, Bob was the first speaker I secured. He had agreed  to return in a few weeks to help us celebrate our 10th anniversary this July.

I will never forget the joy he brought to kindergarten teacher extraordinaire, Maria Knee, who was euphoric while manipulating molecules in software Bob created (The Molecular Workbench). He and his colleagues made the impossible accessible to generations of teachers and children.

I am gutted by Bob’s passing. Losing Bob, Seymour Papert, Marvin Minsky, and Edith Ackermann within an 18-month period is almost too painful to bear. They were fountains of powerful ideas extinguished in anti-intellectual age hostile to science, even wonder. The education community does not enjoy a proud record of honoring the contributions of its pioneers or standing on their shoulders. Instead we continuously rediscover that which already exists, without attribution and with diminished expectations.

More than twenty-five years ago, Seymour Papert and Bob Tinker led a crazy or courageous session at the National Educational Computing Conference in Boston. If memory serves me, the presentation had a title along the lines of “Enemies of Constructionism.” I remember them taking turns placing acetates on the overhead projector proclaiming the name and photo of one of their enemies, including their NSF project manager who happened to be in the audience. This session had to be Seymour’s idea because Bob was too nice, but I suspect that Bob wrote the proposal.

I considered Bob a friend and dear colleague, even though we never really hung out or worked together formally. We often discussed collaborating on an elementary school project of some sort even though Bob modestly claimed not to know anything about little kids. Less than a year ago, Bob introduced me to a colleague and recommended that I be an advisor for an NSF proposal. I was honored to be asked and the grant* has been funded. While searching my email database, I found another proposal Bob himself included me in eleven years ago. I am humbled by his faith in me and respect for my work.

I wonder if ISTE will honor Bob in any way or if they even know who he is? I still await even a tweet about the passing of Dr. Papert. Like Papert, Bob Tinker was never invited to be a keynote speaker at ISTE or its predecessor, NECC.

Rest-in-power Bob. We will miss you forever and the struggle against ignorance continues!


Seminal articles by Robert Tinker, Ph.D.

Read more by searching for Tinker.

The Concord Consortium is assembling a collection of tributes to Bob Tinker here.

Read Bob Tinker’s Wikipedia page.

Notes

* Read the text of the funded NSF proposal, Science and Engineering Education for Infrastructure Transformation.

 

I like Sphero and am impressed by their ability to execute as a company. Their customer service is terrific and their ability to attract the Star Wars license, publicity, and this recent New Yorker profile are unprecedented.
Sphero makes terrific toys. However, companies and reporters would be well-served by speaking with educators who understand learning and have paid some dues before making grand pronouncements about education. Simply comprehending the differences between teaching and learning would be a welcome first step.
 
The article’s ad-hominem attacks on Logo in favor of C for god’s sake shows just how profoundly misguided the “Coding” newbies happen to be. History does not begin with them. Every thought they have, no matter how unimaginative or unoriginal is not automatically superior to the work done by those of us who have taught kids and teachers to program for decades. David Ahl told me that Creative Computing Magazine had 400,000 subscribers in 1984. Thirty years ago, my friend and Constructing Modern Knowledge faculty member, Dr. Dan Watt, sold more than 100,000 books of Learning with Logo. Tens of thousands of educators taught children to program in the 1980s and then again after laptops were introduced in the 1990s. This was not for an hour, but over sufficient time to develop fluency.
 
It takes real balls for every other startup company, politician, and Silicon Valley dilettante to advocate for “coding” with a macho certainty suggesting that learning to program is a novel idea or accomplished in an hour.

Sphero is hardly the first programmable robot. My friend Steve Ocko developed Big Trak for Milton Bradley in the late 1970s. Papert, Resnick, Ocko, Silverman, et al developed LEGO TC Logo, the first programmable LEGO building system in 1987. (Watch Seymour Papert explain the educational benefits in 1987)

Apologies to The New Yorker, but balls don’t teach kids to code. Kids learn to code by teaching balls. Find yourself a copy of Mindstorms, 35 years-old this year, and you’ll understand.
 

Sphero

Sphero is a fun toy that may be programmed IN Logo – the best of both worlds. Tickle for iOS is a version of Scratch (and Scratch is Logo) whose secret sauce is its ability to program lots of toys, several made by Sphero.

 
Logo turns 50 years-old next year. Let’s see what Silicon Valley creates that children learn with for more than 50 days.

Tickle (Scratch/Logo) for iOS and Bluetooth devices

Related articles:

Professional learning opportunities for educators:

Constructing Modern Knowledge offers world-class hands-on workshops across the globe, at schools, conferences, and museums. During these workshops, teachers learn to learn and teach via making, tinkering, and engineering. Computer programming (coding) and learning-by-making with a variety of materials, including Sphero and Tickle. For more information, click here.

My pal Will Richardson asked me to respond to news that the Florida legislature (ground zero for destructive education policies) has passed a bill allowing high school students to substitute “coding” courses for foreign language requirements. (see Florida Senate approves making coding a foreign language)

If you are a toddler learning English as a second language between binge watching seasons of Glitter Force, it’s easy to see how “coding” in a programming language and literacy in a foreign language are equivalent.

For adult legislators entrusted with governance, this policy means two things:

  1. They have no idea what computer coding is.
    • When policy makers say that students should “understand” technology or refer to technology as a “basic skill,” they reveal a profound ignorance of computer science and have reduced a powerful intellectual pursuit to the level of a bicycle safety assembly or “don’t copy that floppy” poster.
  2. They are finally willing to admit that they don’t give a rat’s ass about teaching foreign language.
    • This may also be a tacit recognition that high school foreign language instruction is mostly torturous and unsuccessful.

When Will tweeted me about the news, a fellow twitterit asked, “Why music can’t satisfy foreign language requirements?” While, there is no greater advocate for music education than myself, this newfound willingness to substitute one discipline for a completely unrelated required course is an admission that all course requirements should be abolished. There is so little consensus on what matters. And that may be a very good thing.


Related articles:

I’ve been teaching boys and girls to program computers professionally since 1982 when I created one of the world’s first summer camp computing programs. I led professional development at Methodist Ladies’ College in Melbourne, Australia for a few years beginning in 1990. Girls at MLC used their personal laptops to program in LogoWriter across the curriculum. (read about the history of 1:1 computing and programming here). That work led to perhaps as many as 100,000 Australian boys and girls learning to program computers in the early 1990s.

I taught incarcerated kids in a teen prison to program as part of my doctoral research and currently teach programming to PK-8 girls and boys at The Willows Community School

Along the way, I’ve found it easy to engage girls and their teachers in computer programming. Ample access to computers. high expectations, and a competent teacher are the necessary conditions for girls to view themselves as competent programmers. Such confidence and competence unlocks the world of computer science and gaining agency over the machine for learners.

That said, there is plenty of evidence that girls view computer science like kryptonite. Mark Guzdial, Barbara Ericson, and others have done a yeoman job of documenting the dismal rates of female participation in school or higher-ed computer science. This reality is only aggravated by the sexism and misogyny commonplace in high-tech firms and online.

Programming is fun. It’s cool. It’s creative. It may not only lead to a career, but more importantly grants agency over an increasingly complex and technologically sophisticated world. Being able to program allows you to solve problems and answer Seymour Papert’s 47 year-old  question, “Does the computer program the child or the child program the computer?”

Add the ubiquity of microcomputers to accessibility of programming languages like Turtle Art, MicroWorlds, Scratch, or Snap! and there is no excuse for every kid to make things “out of code.”

All of that aside, girls in the main just don’t find computer science welcoming, relevant, or personally empowering. Entire conferences, government commissions, volumes of scholarship, and media decry the crisis in girls and S.T.E.M. Inspiring girls to embrace computer science remains the holy grail. But…

Screen Shot 2015-06-11 at 5.19.20 PM

The Rolling Spider Minidrone

I found the key!

Drones

Girls love to program drones to fly!

Seriously. Drones.

There is a big in this simple Tickle program intended to fly away and back to its operator. Can you find it? This is an opportunity to reinforce geometric concepts.

There are 2 bugs in this simple Tickle program intended to fly away and back to its operator. Can you find them?
This is an opportunity to reinforce geometric concepts.

I recently purchased an inexpensive small drone, The Parrot Rolling Spider Mini Drone. ($80 US) If flying drones is cool. Programming them to fly is even cooler.

Thanks to a lovely dialect of Scratch called Tickle, you can use an iPad to program a flying machine! Most drones have virtual joystick software for flying the plane in real-time, but programming a flight requires more thought, planning, and inevitable debugging. Programmer error, typos, a breeze, or physical obstacles often result in hilarity.

Earlier this week, I brought my drone and iPad to a workshop Super-Awesome Sylvia and I were leading. Primary and secondary school students from a variety of schools assembled to explore learning-by-making.

Late in the workshop, I unleashed the drone.

Kids were immediately captivated by the drone and wanted to try their hand at programming a flight – especially the girls!

I truly love how such natural play defies so many gender stereotypes. Programming to produce a result, especially control is super cool for kids of all ages. (It’s also worth mentioning that this one of the few “apps” for the iPad that permits actual programming, not just “learning about coding.”)

Primary students program the drone while a boy patiently awaits his turn.

Primary students program the drone intensely while a boy patiently awaits his turn.

look up drone

Secondary school girls track the drone

Can you read this program and predict the drone's behavior?

Can you read this program and predict the drone’s behavior?

Check out some of the programmable toys and other devices you can control with Tickle!

— — — — — — — — — — — — — — — — -

In addition to being a veteran teacher educator, popular speaker, journalist, author, and publisher, Gary is co-author of the bestselling book called the “bible of the maker movement in schools”, Invent To Learn — Making, Tinkering, and Engineering in the Classroom. He also leads the Constructing Modern Knowledge summer institute and is Publisher at CMK Press.

PBL 360 Overview – Professional Development for Modern Educators

Gary S. Stager, Ph.D. and his team of expert educators travel the world to create immersive, high-quality professional development experiences for schools interested in effective 21st century project-based learning (PBL) and learning by doing. Whether your school (or school system) is new to PBL, the tools and technologies of the global Maker Movement, or looking to sustain existing programs, we can design flexible professional learning opportunities to meet your needs, PK-12.

Our work is based on extensive practice assisting educators on six continents, in a wide variety of grade levels, subject areas and settings. Dr. Stager has particular experience working with extremely gifted and severely at-risk learners, plus expertise in S.T.E.M. and the arts. The Victorian State of Victoria recently offered a highly successful three-day PBL 360 workshop for members of their “New Pedagogies Project.”

PBL 360 captures the spirit of the annual Constructing Modern Knowledge summer institute in a local setting.

Options

Professional growth is ongoing, therefore professional development workshops need to be viewed as part of a continuum, not an inoculation. The PBL professional development workshops described below not only reflect educator’s specific needs, but are available in one, two or three-day events, supplemented by keynotes or community meetings, and may be followed-up with ongoing mentoring, consulting or online learning. Three days is recommended for greatest effect and capacity building.

While learning is interdisciplinary and not limited to age, we can tailor PD activities to emphasize specific subjects or grade levels.

These experiences embrace an expanding focus from learner, teacher, to transformational leader with a micro to systemic perspective. Video-based case studies, hands-on activities and brainstorming are all part of these highly interactive workshops.

Guiding principles

  • Effective professional development must be situated as close to the teacher’s actual practice as possible
  • You cannot teach in a manner never experienced as a learner
  • Access to expertise is critical in any learning environment
  • Practice is inseparable from theory
  • We stand on the shoulders of giants and learn from the wisdom of those who ventured before us
  • Modern knowledge construction requires computing
  • Learning and the learner should be the focus of any education initiative
  • Children are competent
  • School transformation is impossible if you only change one variable
  • Things need not be as they seem

PBL 360

Effective project-based learning requires more than the occasional classroom project, no matter how engaging such occasional activities might be. PBL 360 helps educators understand the powerful ideas behind project-based learning so they can implement PBL and transform the learning environment using digital technology and modern learning theory. PBL 360 helps teachers build a powerful, personal set of lenses and an ability to see “360 degrees” – meaning in every direction – with which to build new classroom practices.

Teachers, administrators and even parents should consider participation.

Reinventing ourselves

Piaget teaches us that knowledge is a consequence of experience. Therefore, any understanding of project-based learning or ability to implement it effectively must be grounded in personal experience. It is for this reason that all professional development pathways begin with an Invent to Learn workshop. Subsequent workshop days will build upon personal reflections and lessons learned from the Invent to Learn experience. Flexibility and sensitivity to the specific needs of participants is paramount.

Day One – Learning Learning

Join colleagues for a day of hard fun and problem solving — where computing meets tinkering and design. The workshop begins with the case for project-based learning, making, tinkering, and engineering. Next, we will discuss strategies for effective prompt-setting. You will view examples of children engaged in complex problem solving with new game-changing technologies and identify lessons for your own classroom practice. Powerful ideas from the Reggio Emilia Approach, breakthroughs in science education, and the global maker movement combine to create rich learning experiences.

“In the future, science assessments will not assess students’ understanding of core ideas separately from their abilities to use the practices of science and engineering. They will be assessed together, showing that students not only “know” science concepts; but also that they can use their understanding to investigate the natural world through the practices of science inquiry, or solve meaningful problems through the practices of engineering design.” Next Generation Science Standards (2013)

Participants will have the chance to tinker with a range of exciting new low- and high-tech construction materials that can really amplify the potential of your students. The day culminates in the planning of a classroom project based on the TMI (Think-Make-Improve) design model.

Fabrication with cardboard and found materials, squishy electronic circuits, wearable computing, Arduino, robotics, conductive paint, and computer programming are all on the menu.

This workshop is suitable for all grades and subject areas.

Day Two – Teaching

Day two begins with a period of reflection about the Invent to Learn workshop the day before, focusing on teaching and project-based learning topics, including:

  • Reflecting on the Invent to Learn workshop experience
  • Compare and contrast with your own learning experience
  • Compare and contrast with your current teaching practice

Project-based learning

  • What is a project?
  • Essential elements of effective PBL

Thematic curricula

  • Making connections
  • Meeting standards

Design technology and children’s engineering

  • The case for tinkering
  • Epistemological pluralism
  • Learning styles
  • Hands-on, minds-on
  • Iterative design methodology

Teacher roles in a modern classroom

  • Teacher as researcher
  • Identifying the big ideas of your subject area or grade level
  • Preparing learners for the “real world”
  • What does real world learning look like?
  • Lessons from the “Best Educational Ideas in the World”
  • What we can learn from Reggio Emilia, El Sistema and the “Maker” community?
  • Less Us, More Them
  • Shifting agency to learners
  • Creating independent learners

Classroom design to support PBL and hands-on learning

  • Physical environment
  • Centers, Makerspaces, and FabLabs
  • Scheduling

Tools, technology, materials

  • Computers as material
  • Digital technology
  • Programming
  • Choices and options

PBL 360 models teaching practices that put teachers at the center of their own learning, just like we want for students. This in turn empowers teachers to continue to work through the logistics of changing classroom practice as they develop ongoing fluency in tools, technologies, and pedagogy. Teachers who learn what modern learning “feels” like are better able to translate this into everyday practice, supported by ongoing professional development and sound policy.

Day Three – Transformation

The third day focuses on the details and specifics of implementing and sustaining PBL in individual classrooms and collaboratively with colleagues. Participants will lead with:

Program Planning

  • Curricular audit
  • Standards, grade levels
  • Assessment

Classroom Planning

  • Planning PBL for your classroom
  • Curricular projects vs. student-based inquiry
  • Creating effective project prompts

Identifying Change

  • The changing role of the teacher
  • Shaping the PBL-supportive learning environment
  • Does your school day support PBL?
  • Action plan formulation

Advocacy

  • Communicating a unifying vision with parents and the community
  • Adjusting expectations for students, parents, community, administrators, and colleagues
  • Creating alliances
  • Identifying resources

Modern learning embraces a vision of students becoming part of a solution-oriented future where their talents, skills, and passions are rewarded. The changes in curriculum must therefore be matched with a change in pedagogy that supports these overarching goals. Teachers need to understand design thinking, for example, not just as a checklist, but as a new way to shape the learning environment. It is no longer acceptable to simply teach students to use digital tools that make work flow more efficient, nor will it be possible to segregate “making” and “doing” into vocational, non-college preparatory classes.

PBL 360 will help teachers create learning environments that meet these goals with professional development that is innovative, supportive, and sustainable.

Constructive Technology Workshop Materials

Although constructive technology evolves continuously, the following is the range of hardware and software that can be combined with traditional craft materials and recycled items supplied by the client. The specialized materials will be furnished by Constructing Modern Knowledge, LLC. Specific items may vary.

Cardboard construction

  • Makedo
  • Rollobox
Robotics

  • LEGO WeDo
  • Hummingbird Robotics Kits
  • Pro-Bot
eTextiles/soft circuits/wearable computers

  • Lilypad Arduino Protosnap
  • Lilypad Arduino MP3
  • Flora
Computer Science, programming, and control

  • Scratch
  • Snap!
  • Turtle Art
  • Arduino IDE
  • Ardublocks
Microcontroller engineering and programming

  • Arduino Inventor’s Kits
  • Digital Sandbox
New ways to create electrical circuits

  • Circuit Stickers
  • Electronic papercraft
  • Circuit Scribe pens
  • Conductive paint
  • Squishy Circuits
Electronics and Internet of Things

  • MaKey MaKey
  • littleBits
Consumables

  • Coin cell batteries
  • Sewable battery holders
  • Foam sheets and shapes
  • Felt
  • Needles and thread
  • Conductive thread and tape
  • Fabric snaps

Additional costs may be incurred for transporting supplies and for consumable materials depending on the number of participants and workshop location(s). Groups of more than 20 participants may require an additional facilitator.

Invent To Learn books may be purchased at a discount to be used in conjunction with the workshop.


About Gary S. Stager, Ph.D.

Gary Stager, an internationally recognized educator, speaker and consultant, is the Executive Director of  Constructing Modern Knowledge. Since 1982, Gary has helped learners of all ages on six continents embrace the power of computers as intellectual laboratories and vehicles for self-expression. He led professional development in the world’s first laptop schools (1990), has designed online graduate school programs since the mid-90s, was a collaborator in the MIT Media Lab’s Future of Learning Group and a member of the One Laptop Per Child Foundation’s Learning Team.

When Jean Piaget wanted to better understand how children learn mathematics, he hired Seymour Papert. When Dr. Papert wanted to create a high-tech alternative learning environment for incarcerated at-risk teens, he hired Gary Stager. This work was the basis for Gary’s doctoral dissertation and documented Papert’s most-recent institutional research project.

Gary’s recent work has included teaching and mentoring some of Australia’s “most troubled” public schools, launching 1:1 computing in a Korean International School beginning in the first grade, media appearances in Peru and serving as a school S.T.E.M. Director. His advocacy on behalf of creativity, computing and children led to the creation of the Constructivist Consortium and the Constructing Modern Knowledge summer institute. Gary is the co-author of Invent To Learn: Making, Tinkering, and Engineering in the Classroom, often cited as the “bible of the Maker Movement in schools”.

A popular speaker and school consultant, Dr. Stager has keynoted major conferences worldwide to help teachers see the potential of new technology to revolutionize education. Dr. Stager is also a contributor to The Huffington Post and a Senior S.T.E.M. and Education Consultant to leading school architecture firm, Fielding Nair International. Gary also works with teachers and students as Special Assistant to the Head of School for Innovation at The Willows Community School in Culver City, California.He has twice been a Visiting Scholar at the University of Melbourne’s Trinity College. Gary currently works as the Special Assistant to the Head of School for Innovation at The Willows Community School in Culver City, California.

Contact

Email learning@inventtolearn.com to inquire about costs and schedule for your customized workshop. We will work with you to create an experience that will change your school, district, or organization forever. Additional ongoing consulting, mentoring, or online learning services are available to meet individual needs.

Summer Institute

Schools should also consider sending personnel to the annual summer project-based learning institute, Constructing Modern Knowledge – (www.constructingmodernknowledge.com)

Candidly, I have not been enthusiastic about teaching “computational thinking” to kids. In nearly every case, computational thinking seemed to be a dodge intended to avoid computing, specifically computer programming.

“There is no expedient to which a man will not resort to avoid the real labor of thinking.”

(Sir Joshua Reynolds)

Programming is an incredibly powerful context for learning mathematics while engaged in being a mathematician. If mathematics is a way of making sense of the world, computing is a great way to make mathematics.

Most of the examples of computational thinking I’ve come across seemed like a cross between “Computer Appreciation” and “Math Appreciation.” However, since smart people were taking “computational thinking” more seriously, I spent a great deal of time thinking about a legitimate case for it in the education of young people.

Here it is…

Computational thinking is useful when modeling a system or complex problem is possible, but the programming is too difficult.

Examples will be shared in other venues.

Almost daily, a colleague I respect posts a link to some amazing tale of classroom innovation, stupendous new education product or article intended to improve teaching practice. Perhaps it is naive to assume that the content has been vetted. However, once I click on the Twitter or Facebook link, I am met by one of the following:

  1. A gee-whiz tale of a teacher doing something obvious once, accompanied by breathless commentary about their personal courage/discovery/innovation/genius and followed by a steam of comments applauding the teacher’s courage/discovery/innovation/genius. Even when the activity is fine, it is often the sort of thing taught to first-semester student teachers.
  2. An article discovering an idea that millions of educators have known for decades, but this time with diminished expectations
  3. An ad for some test-prep snake oil or handful of magic beans
  4. An “app” designed for kids to perform some trivial task, because “it’s so much fun, they won’t know they’re learning.” Thanks to sites like Kickstarter we can now invest in the development of bad software too!
  5. A terrible idea detrimental to teachers, students or public education
  6. An attempt to redefine a sound progressive education idea in order to justify the status quo

I don’t just click on a random link from a stranger, I follow the directions set by a trusted colleague – often a person in a position of authority. When I ask them, “Did you read that article you posted the link to?” the answer is often, “I just re-read it and you’re right. It’s not good.” Or “I’m not endorsing the content at the end of the link, “I’m just passing it along to my PLN.”

First of all, when you tell me to look at something, that is an endorsement. Second, you are responsible for the quality, veracity and ideological bias of the information you distribute. Third, if you arenot taking responsibility for the information you pass along, your PLN is really just a gossip mill.

If you provide a link accompanied by a message, “Look at the revolutionary work my students/colleagues/I did,” the work should be good and in a reasonable state of completion. If not, warn me before I click. Don’t throw around terms like genius, transformative or revolutionary when you’re linking to a kid burping into Voicethread!! If you do waste my time looking at terrible work, don’t blame me for pointing out that the emperor has no clothes.

Just today, two pieces of dreck were shared with me by people I respect.

1) Before a number of my Facebook friends shared this article, I had already read it in the ASCD daily “Smart” Brief. Several colleagues posted or tweeted links to the article because they yearn for schools to be better – more learner-centered, engaging and meaningful.

One means to those ends is project-based learning.  I’ve been studying, teaching and speaking about project-based learning for 31 years. I’m a fan. I too would like to help every teacher on the planet create the context for kids to engage in personally meaningful projects.

However, sharing the article, Busting myths about project-based learning, will NOT improve education or make classrooms more project-based. In fact, this article so completely perverts project-based learning that it spreads ignorance and will make classroom learning worse, not better.

This hideous article uses PBL, which the author lectures us isn’t just about projects (meaningless word soup), as a compliment to direct instruction, worksheets and tricking students into test-prep they won’t mind as much. That’s right. PBL is best friends with standardized testing and worksheets (perhaps on Planet Dummy). There is no need to abandon the terrible practices that squeeze authentic learning out of the school day. We can just pretend to bring relevance to the classroom by appropriating the once-proud term, project-based learning.

Embedding test-prep into projects as the author suggests demonstrates that the author really has no idea what he is talking about. Forcing distractions into a student’s project work robs them of agency and reduces the activity’s learning potential. The author is also pretty slippery in his use of the term, “scaffolding.” Some of the article doesn’t even make grammatical sense.

Use testing stems as formative assessments and quizzes.

The  article was written by a gentleman who leads professional development for the Buck Institute, an organization that touts itself as a champion of project-based learning, as long as those projects work backwards from dubious testing requirements. This article does not represent innovation. It is a Potemkin Village preserving the status quo while allowing educators to delude themselves into feeling they are doing the right thing.

ASCD should be ashamed of themselves for publishing such trash. My colleagues, many with advanced degrees and in positions where they teach project-based learning, should know better!

If you are interested in effective project-based learning, I’m happy to share these five articles with you.

2) Another colleague urged all of their STEM and computer science-interested friends to explore a site raising money to develop “Fun and Creative Computer Science Curriculum.” Whenever you see fun and creative in the title of an education product, run for the hills! The site is a fund-raising venture to get kids interested in computer science. This is something I advocate every day. What could be so bad?

Thinkersmith teaches computer science with passion and creativity. Right now, we have 20 lessons created, but only 3 packaged. Help us finish by summer!

My experience in education suggests that once you package something, it dies. Ok Stager, I know you’re suspicious of the site and the product searching for micro-investors, but watch the video they produced. It has cute kids in it!

So, I watched the video…

Guess what? Thinkersmith teaches computer science with passion and creativity – and best of all? YOU DON’T EVEN NEED A COMPUTER!!!!!!

Fantastic! Computer science instruction without computers! This is like piano lessons with a piano worksheet. Yes siree ladies and gentleman, there will be no computing in this computer science instruction.

A visitor to the site also has no idea who is writing this groundbreaking fake curriculum or their qualifications to waste kids’ time.

Here we take one of the jewels of human ingenuity, computer science, a field impacting every other discipline and rather than make a serious attempt to bring it to children with the time and attention it deserves, chuckleheads create cup stacking activities and simplistic games.

There are any number of new “apps” on the market promising to teach kids about computer science and programming while we should be teaching children to be computer scientists and programmers.

At the root of this anti-intellectualism is a deep-seated belief that teachers are lazy or incompetent. Yet, I have taught thousands of teachers to teach programming to children and in the 1980s, perhaps a million teachers taught programming in some form to children. The software is better. The hardware is more abundant, reliable and accessible. And yet, the best we can do is sing songs, stack cups and color in 2013?

What really makes me want to scream is that the folks cooking up all of these “amazing” ideas seem incapable of using the Google or reading a book. There is a great deal of collected wisdom on teaching computer science to children, created by committed experts and rooted in decades worth of experience.

If you want to learn how to teach computer science to children, ask me, attend my institute, take a course. I’ll gladly provide advice, share resources, recommend expert colleagues and even help debug student programs. If you put forth some effort, I’m happy to match it.

There is no expedient to which a man will not resort to avoid the real labor of thinking.
-Sir Joshua Reynolds

Don’t lecture me about the power of social media, the genius of your PLN, the imperative for media literacy or information curation if you are unwilling to edit what you share. I share plenty of terrible articles via Twitter and Facebook, but I always make clear that I am doing so for purposes or warning or parody. The junk is always clearly labeled.

Please filter the impurities out of your social media stream.You have a responsibility to your audience.

Thank you


* Let the hysterical flaming begin! Comments are now open.

While waiting for the 5th grade class to settle  down between recess and their holiday party, I wrote this project starter for creating arithmetic flashcard software in MicroWorlds. While the “math” isn’t particularly interesting or open-ended, there are plenty of opportunities for the students to improve and augment the software.

Bad drill and practice doesn’t become good because it is programmed in Logo, or by kids. However, the person who learns the most from “educational” software is the person who made it.

I thought of doing this because “practice multiplication facts” has been written on the classroom board for months. If the kids “write the software, perhaps they’ll think about multiplication a bit.

This is also an opportunity for introducing concepts, like percent, in order to create a cumulative score.

Download the PDF project starter by clicking the link below:

 A “Math” Game Only A Mother Could Love (PDF)