Scratch is a miracle. It’s popularity as a creative computing environment and its ubiquity around the world are truly impressive. Millions of children use the environment and have shared tens of millions of projects for others to enjoy and remix.

Scratch is a descendent of the Logo programming language. Logo was the first, and I would argue best, programming environment ever designed for children and learning. Logo is over fifty years old. While this would seem to be a million years old in technology years, Logo not only remains powerful in the hands of children, but benefits from a half-century worth of research, project ideas, and collective pedagogical wisdom.

Scratch adds media computation to the Logo bag of tricks available to kids. The sort of storytelling projects created in it appeals to adults who value kids being engaged in creative acts. A large part of Scratch’s appeal is the enormity of its project library full of projects that look like anyone can make them. It is also worth remembering that Scratch was originally designed for use in afterschool programs where teaching could not be guaranteed. Kids look at Scratch and know what to do. These are powerful and legitimate design features that contribute to its popularity.

Logo on the other hand was designed as a vehicle for education reform and created a “microworld” in which children could be mathematicians rather than just be taught math. Kids using Logo often fell in love with mathematics and felt intellectually powerful for the first time. Logo introduced the concept of the turtle, a representation of the child’s place in physical space, and turtle geometry, a math connected to movement in the real world. The turtle matched the intensity of children, captured their imagination, and was their collaborator in constructing mathematical knowledge. In 1968, Alan Kay first imagined the Dynabook, the progenitor of the modern laptop or tablet computer, after observing children programming in Logo. Kay recalls being amazed by the sophisticated mathematics young children were engaged in. Fifty-two years later, I feel the exact same way every time I use Logo with children.

*Today, a 5th grader came bounding up to me to announce, “Look what I accomplished!” She had taught the Logo turtle to draw a fraction, a bit of curricular detritus that normally invokes dread. In the process, she simultaneously demonstrated understanding of fractions, division, angle, linear measurement, and was on the verge of understanding variables all while teaching the turtle to draw. Turtle geometry may be the greatest mathematical prosthetic ever invented for learners. Logo creates a Mathland in which “messing about” and learning mathematics is as natural as a child develops oral language.

Math is the weakest link in every school. It remains the center for misery and instructionism in most. Seymour Papert taught me that the teaching of math ultimately jeopardizes all other efforts at educational progress. There is no gap as wide as the gulf between mathematics – a jewel of human intellect, and school math. Papert believed that even the most progressive schools become undone by the traditional diet and pedagogy of school math. He often discussed the need to create a mathematics children can love, rather than inventing tricks for teaching a “noxious” irrelevant math. Papert convinced me that no matter how project-based or student-centered a school happens to be, there remains a part of the day or week (math time) when coercion is reintroduced into the system. That is ultimately coercive to the nobler aims of the institution. Logo is and has been one of the few Trojan horses available for helping teachers rethink “math” on behalf of the kids they serve.

I fear for the future of such experiences in a world in which software has no value and there is no incentive for modern Logos to be created.

I just spent several hundred words stipulating that Scratch is a good thing. However, decisions were made in the evolution of Scratch that undermine its ability to make mathematics comprehensible, wondrous, relevant, and accessible for learners of all ages. Scratch could maintain fidelity to the powerful ideas inherent in Logo while adding all of the storytelling, animation, and media manipulation in a Web-based programming environment, but the designers of Scratch have decided to do otherwise. In fact, the most recent version, Scratch 3.0, has made it either too difficult or impossible to create the sorts of experiences I desire for my grandchildren and the children I’m privileged to teach.

I truly do not wish to step into the minefield of arguing about everyone’s favorite software, but my concerns are legitimate. I know readers may be thinking, “Hey, design your own software if you love Logo so much!” This is impossible in a world in which software has no value and there is no incentive for modern Logos to be created. Scratch benefits from mountains of government, university, and corporate funding, making it the 900-pound gorilla in coding for kids. That’s a good thing, but it could be better. My hope is that as Scratch evolves, consideration is given to bringing back some of the powerful mathematical ideas that have been lost.

Let me get specific. The following examples are a non-exhaustive list of the ways in which Scratch makes my life more difficult as a teacher and teacher educator concerned with providing authentic mathematical experiences.

Putting the turtle out to pasture
Perhaps the most enduring and kid-imagination-capturing metaphor of Logo programming goes like this:

[Teacher] “The turtle has a pen stuck in its belly button. What do you think happens when it drags its pen?”

[Kids] It draws!

This sounds simple, but is at the heart of what makes Logo a powerful, personal experience. Placing a transitional object representing ourselves inside of the machine is an instant personal invitation to programming. Drawing, with a crayon, pencil, or turtle is the protean activity for representing a child’s thinking.

Drawing or painting with the mouse is fine but denies children opportunities to express mathematical formalisms in service of drawing. There is fifty years’ worth of scholarship, joy, and powerful ideas associated with turtle graphics – often a user’s first experience with thinking like a mathematician and debugging.

Scratch 3.0 inexplicably demotes its pen blocks (commands) to software extensions. The extensions are hidden until the user un-hides them. All of the other Scratch 3.0 extensions support either external hardware control or more advanced esoterica like interactive video, language translation, or text-to-speech functionality. I appreciate that part of Scratch’s success is its clean design and lack of clutter. However, pen blocks are seminal and were integrated into previous versions. This design decision has several negative consequences.

  • It complicates the possible use of turtle graphics by requiring finding the location of the extensions button and clicking on the pen extensions
  • It implies that turtle graphics (drawing) is not as valuable a form of expression as animation.
  • The symbol on the extensions button is highly non-intuitive.
  • The pen blocks, once the extension is loaded, appear near the bottom of the block palettes, far from the motion blocks they rely on. This makes block programming cumbersome when the focus is turtle geometry.

The turtle has a pen stuck in its nose? Ouch!
In Scratch, the sprite draws from the perimeter of its shape, not its center. This makes precise movement, predictions about distances, and drawing precision much more difficult.

There are no turtle costumes for sprites
The turtle head points in the direction that matches “Forward” commands. This is obvious to even the youngest programmers. In Scratch, even if one wanted to use the turtle, there are no turtle costumes. Neither the turtles found in systems, like Turtle Art, MicroWorlds,  Lynx , or even the old 70s-80s era turtle  are provided. While it is possible to design your own Scratch costumes, you would be required to do so for every project, rather than merely adding sprite costumes to the system.

It is easy to explain that the “turtle may wear other costumes you design,” telling the kids that “the sprite could be a turtle that you can dress in custom costumes,” adds needless complexity.

No Clean, CG, Home, or CS
Nearly every other version of Logo has a Clean command for erasing the screen, CG, or CS for erasing the screen and repositioning the turtle at the center of the screen with a compass orientation of zero. Commonly found, HOME commands, send the turtle back to the center of the screen at coordinates, [0 0]. These are all simple concepts for even young children to quickly grasp and use.

Scratch’s pen extension Erase All block wipes the screen clean, but neither returns the sprite to home nor reorients a “dizzy turtle.”

Program for clearing the screen and sending the turtle/sprite home

Sure, if a teacher wants students to have a block performing the roles of Clearscreen, Scratch allows them to Make a Block.

The problem with doing so is that Scratch leaves the blocks you create, complete with their instructions, in the blocks palette – cluttering up your workspace. The definition of the “new” block cannot be hidden from users, even when the new block appears under My Blocks. Even more critically, there is no simple way to add pseudo-primitives (user-created blocks) to Scratch 3 for use by students each time they use the software. Therefore, you need to recreate Clearscreen in every new project.

[Making your own blocks is buggy too. Make your own block. Drag that stack of blocks, topped by Define, off the screen to delete it. Press Undo (Apple-Z or CTRL-Z). The definition stack of blocks returns, but not the new block under My Blocks until another block is created.]

The default sprite orientation is 90
When you hatch a sprite in Scratch, its orientation is towards the right side of the screen with an orientation of 90. If one hopes for children to construct understanding of compass orientation based on Mod 360, orienting the sprite/turtle to 0 is more intuitive. Since the turtle is a metaphor for yourself in space, your orientation is up, or 0 when facing the computer to program it.

No wrapping
For many kids, one of the most intoxicating aspects of turtle graphics comes from commanding the turtle to go forward a large number of steps. In many ways, it’s a kid’s first experience with big numbers. Turn the turtle and go forward a million steps and get a crazy wrapping pattern on the screen. Add some pen color changes, turns, and more long lines and math turns into art turns into math.

Scratch has no wrapping due to its focus on animation and game design. There could be a way to toggle wrap/no wrap. But alas…

Units are unnecessary
Not only are they unneeded, but educationally problematic. Far too much of math education is merely vocabulary acquisition, often devoid of actual experience. I go into countless classrooms where I find a store-bought or handmade “angles” poster on the wall listing the various kinds of angles. My first question is, “Who do you think is reading that?” The kids certainly aren’t, but more importantly, “Who cares?” Kids are forced to memorize names of angles too often without any experience with angles. Turtle geometry changes all of that.

If you watch me introduce turtle geometry to children, I show them that the turtle can walk and turn. It walks in turtle steps. I never use the terms, angle or degrees, until either kids use them or much much much later. After kids have experience with angles and a growing intuition about their units of measure will I mention the words, angle or degrees. After experience, those labels hang nicely on the concepts and the terms are understood, not just parroted.

In Scratch, the turn right and turn left blocks include the label for “degrees.” This is quite unfortunate. The design of these blocks is particularly odd since they do not even use the words, right and left, but arrows instead. This is most peculiar when juxtaposed against the rest of the motion blocks which are excessively chatty with extraneous text for their inputs.

Why use symbols for right and left and not a straight arrow for move?

To make matters worse, the default degree value in Scratch is 15. Kids naturally turn in 90 degree increments. If the default were 90, as it is in Turtle Art, kids quickly realize that there are turns smaller and larger when seeking angular precision. This is a much more effective sequence for understanding angle measurement from the syntonic to the abstract.

One tacit, yet profound, benefit of teachers teaching with Logo is that they gain experience teaching mathematics without front-loading vocabulary. In too many classrooms, kids are “taught” terms, like degree or angle, absent any experience. Logo-like environments offer the potential for teachers to appreciate how students may engage in mathematics unburdened by jargon. After children enjoy meaningful experiences and “mess-about” with the turtle, it is easy to say, “that’s called an angle,” or “the units used to measure angles are called degrees.” Those terms now have a powerful idea to hang their hat on.

Starting with units is not just unnecessary, it’s pedagogically unproductive.

Asymmetrical movement
Why are there blocks for turning right and left when there is only one move block? In Logo, Forward (FD) and Back (BK) are incredibly simple for children to understand and act out by playing turtle as a formal activity or in the course of programming. Move is ambiguous. Which way should I move? Forward and back make perfect sense.

Frankly, having a default of 10 in the move block is also a drag. For decades, teachers have experienced success by asking children, “How far would you like the turtle to go?” Kids suggest values and then are surprised by them. 10 is an arbitrary number. I might prefer 0 or a random integer as the default value for move. Such a change would force children to make a decision about the distance they wish to travel.

If you want the turtle to move backward, there is no back block. You are required to turn 180 degrees or move by a negative value.

Premature use of negative numbers
Introducing negative numbers and vectors the moment one encounters the turtle is premature and likely developmentally inappropriate. There is no reason for little kids to deal with negative numbers so soon when forward (fd) and back (bk) blocks could have been in the system, or at least as primitives under the pen extensions.

Multiple forwards provides kids practice with repeated addition, leading to multiplication.

Consider this simple example:

fd 20
fd 30
fd 100

Now you want the turtle to return to the midpoint of that line segment.

You can achieve that goal three ways, not including all of the repeated addition that might be used if a kid is not ready to divide 150 by 2 or figure out that a U-turn equals 180 degrees.

bk 75
rt 180 fd 75
fd -75

It is the possibility of solving even simple problems in multiple ways that is central to the genius of learning to think mathematically with Logo and the turtle. Sadly, the Scratch use of “move” to replace forward and back makes what was once a natural simple act, complicated or impossible.

PS: One more annoyance
Why are ask and answer in the Sensing palette? They get information from a user, but do not sense anything. Either move them or rename the Sensing palette, Data. Again, why lead the witness with the arbitrary “What’s your name?” value?


*Notes:
This was largely written after a recent day teaching kids. I spent months deciding whether to share this with the world. The great Cynthia Solomon contributed to my thinking and Sylvia Martinez read a draft. Seymour Papert is in my head all of the time.

Resources

  • Scratch – web site for Scratch software
  • ScratchEd – online community and resources for teachers teaching with Scratch
  • LogoThings – Cynthia Solomon’s collection of artifacts on the history of Logo
  • A Modest Proposal – ideas for using Scratch to learn computing and reading
  • Lynx – web site for new generation of Web-based Logo
  • MicroWorlds – web site for MicroWorlds software
  • Turtle Art – web site for Turtle Art software
  • The Daily Papert – archives of Seymour Papert writing, audio, and video
  • The Logo Exchange – archives of the long-running journal for Logo-using educators
  • Logo history discussion – video interview with Cynthia Solomon and Wally Feurzig, two of Logo’s creators

Selected bibliography

  • Abelson, H., & DiSessa, A. A. (1986). Turtle geometry: The computer as a medium for exploring mathematics: MIT press.
  • Harvey, B. (1982). Why logo? . Byte, 7, 163-193.
  • Hawkins, D. (2002). The informed vision; essays on learning and human nature. NY: Algora Press.
  • Newell, B. (1988a). Turtle confusion: Logo puzzles and riddles. Canberra, Australia: Curriculum Development Centre.
  • Newell, B. (1988b). Turtles speak mathematics. Canberra, Australia: Curriculum Development Centre.
  • Papert, S. (1972). Teaching children to be mathematicians versus teaching about mathematics. International Journal of Mathematical Education in Science and Technology, 3(3), 249-262.
  • Papert, S. (1993). Mindstorms: Children, computers, and powerful ideas (2nd ed.). New York: Basic Books.
  • Papert, S. (1999). Introduction: What is logo and who needs it? In LCSI (Ed.), Logo philosophy and implementation (pp. v-xvi). Montreal, Quebec: LCSI.
  • Papert, S. (2000). What’s the big idea? Toward a pedagogical theory of idea power. IBM Systems Journal, 39(3&4), 720-729.
  • Papert, S. (2002). The turtle’s long slow trip: Macro-educological perspectives on microworlds. Journal of Educational Computing Research, 27, 7-27.
  • Papert, S. (2005). You can’t think about thinking without thinking about thinking about something. Contemporary Issues in Technology and Teacher Education, 5(3), 366-367.
  • Watt, D. (1983). Learning with logo. New York: McGraw-Hill Book Co.
  • Watt, M., & Watt, D. (1986). Teaching with logo: Building blocks for learning. NY: Addison-Wesley Publishing Company.

The Papert articles (above) are available here.


Veteran educator Dr. Gary Stager is co-author of Invent To Learn — Making, Tinkering, and Engineering in the Classroom and the founder of the Constructing Modern Knowledge summer institute. He led professional development in the world’s first 1:1 laptop schools and designed one of the oldest online graduate school programs. Learn more about Gary.


Marvin Minsky & Gary Stager

One great joy of my life has been getting to know and work with so many of my heroes/sheroes. Even greater satisfaction comes from sharing those people with my fellow educators, via books, presentations, and the Constructing Modern Knowledge summer institute.

Over dinner thirty years ago, one of my mentors, Dan Watt dropped some wisdom on me when he said, “writing is hard.” Writing is hard. I find sitting down to write is even harder. The reward of writing is your work being read by others, especially when readers report thinking differently as a result. Even the “hate mail” I received as a magazine columnist and editor made the agony of writing worthwhile.

While proud of many things I have written, three pieces stand out as enormous honors. Being asked by the science journal of record, Nature, to author the obituary of my friend and mentor, Dr. Seymour Papert, was a difficult challenge and great privilege. Learning later that the great Alan Kay recommended me for the assignment took my breath away. I will remain forever grateful for his confidence in my ability to eulogize our mutual friend in such an august journal.

On two other occasions, I have been invited to contribute to books by my heroes. A few years ago, the prolific progressive author and educator, Herb Kohl, asked me to write a response piece to the great musician, David Amram, for the book, The Muses Go to School: Inspiring Stories About the Importance of Arts in Education. My fellow contributors include Bill T. Jones, Bill Ayers, Whoopi Goldberg, Deborah Meier, Diane Ravitch, Phillip Seymour Hoffman, Lisa Delpit, Maxine Greene, and others. Many readers may be unaware of my music studies and the fact that my career began as a public school arts advocate. Sharing anything, let alone a book, with the remarkable Herbert Kohl remains a source of enormous pride. This is an important book that should receive greater attention.

I first met Artificial intelligence pioneer, Marvin Minsky, in the late 1980s. I cannot say that I spent a great deal of time with him over the subsequent decades, but anyone who ever encountered Marvin can testify to the impact that I had on them, perhaps down to the molecular level. The fact that Marvin agreed to spend time leading a fireside chat with any interested educator at the first eight Constructing Modern Knowledge institutes continues to blow my mind. I will forever cherish his wit, wisdom, friendship, and generosity.

Inventive Minds: Marvin Minsky on Education is a brand new book based on essays by Dr. Marvin Minsky, one of the great scientists, inventors, and intellectuals of the past century. Our mutual friend, Dr. Cynthia Solomon, a hugely important figure in her own right, edited a text in which important essays by Minsky were assembled and responded to by an amazing collection of Marvin’s friends. One of Marvin’s proteges, Xiao Xiao, illustrated the book. The contributors to this book include:

  • Co-inventor of the Logo programming language, Cynthia Solomon
  • Father of the personal computer, Alan Kay
  • Legendary computer science professor, author, and pioneer of the Open Courseware movement, Hal Abelson
  • Former Director the MIT Media Laboratory, Walter Bender
  • Artificial intelligence pioneer and MIT professor, Patrick Henry Winston
  • Software engineer, inventor, and executive, Brian Silverman
  • Software engineer, Mike Travers
  • Haptics engineer and scientist, Margaret Minsky
  • Me

I can’t speak for my contribution, but am confident that Inventive Minds will stimulate a great deal of thought and dialogue among you and your colleagues. Buy the book and enjoy some great summer reading!


Veteran educator Dr. Gary Stager is co-author of Invent To Learn — Making, Tinkering, and Engineering in the Classroom and the founder of the Constructing Modern Knowledge summer institute. He led professional development in the world’s first 1:1 laptop schools and designed one of the oldest online graduate school programs. Learn more about Gary here.


I am often asked about the adoption of Chromebooks and have spent months agonizing how to respond. This article offers food for thought to teachers, administrators, school board members, and policy makers who might find themself swept up in Chromebook mania.

What should a student computer do?

In addition to being portable, reliable, lightweight, affordable, and with a good battery life, a student computer should capable of doing everything our unimaginative adult reptilian brains think a kid should be able to do with a computer and powerful enough to do a great many things we cannot imagine.

The Chromebook might be sufficient if you believe that the primary purpose of school to be taking notes, looking stuff up, completing forms, and communication. I find this to be an impoverished view of both learning and computing. Children need and deserve more. If you find such uses compelling, kids already own cellphones capable of performing such tasks.

Powerful learning is a bargain at any price

Thirty years ago, my friend and mentor Dr. Cynthia Solomon taught me that sound education decisions are never based on price. Providing children with underpowered technology insults kids, treats them like 2nd class citizens, and signals that schools should get scraps. The more schools settle for less, the less the public will provide.

One of the most peculiar terms to enter the education lexicon is “device.” What was the last time you walked into an electronics or computer store and said to a salesperson, “I would like to buy a device please?” This never happens. You buy yourself a computer.

A device is an object you buy on the cheap for other people’s children to create an illusion of modernity. A Chromebook might be swell for a traveling salesman or UPS driver. It is, in my humble opinion, insufficient for school students in 2017.

Providing students with a Chromebook rather than a proper laptop computer is akin to replacing your school orchestra instruments with kazoos. We live in one of the richest nations in all of history. We can afford a cello and multimedia-capable computer for every child.

My best friend’s son attends a middle school where every student was issued a Chromebook. The kids use them primarily to charge their iPhones.

If someday, Chromebooks are sufficiently robust, reliable, and flexible at a good price, I will embrace them with great enthusiasm. That day has yet to arrive.

Chromebooks represent an impoverished view of computing

Read Seymour Papert and Cynthia Solomon’s 1971 paper, “Twenty Things to Do with a Computer,” (Go ahead. Google it on a Chromebook if you wish) and see how many of things they demonstrated that kids were doing with computers more than 45 years ago are possible on your “device.”

Australian schools in 1989-90 embraced personal laptop computing as a vehicle for programming across the curriculum and created a renaissance of learning with computers that too many educators remain ignorant of or have chosen to forget. Look at the capabilities of the XO computer, aka the $100 laptop, created by the One Laptop Per Child foundation. It was more powerful than today’s Chromebook. We do not to use classroom technology that dooms learners to secretarial roles. They need computers to invent, create, compose, control microcontrollers, program robots, run external machines, build simulations, and write their own software.

Where is S.T.E.M? Or the Arts in the examples of classroom Chromebook use? To those who say that you can compose music, make movies, or edit large audio files on a Chromebook, I suggest, “You first!” The ability to connect things like microcontrollers, robotics, 3D printers, laser cutters may indeed become possible on a Chromebook in the near future, but we already have all sorts of personal computers capable of doing all of those things well today. Why gamble?

When geniuses like Alan Kay, Seymour Papert, Cynthia Solomon, and Nicholas Negroponte spoke of “the children’s machine,” they meant a better computer than what their father used at the office. Today, “student devices” take on an air of condescension and paternalism that disempower young people.

Schools continuously invent that which already exists; each time with diminished expectations.

They love them!

The only time you hear teachers or administrators claim that kids love something is when those very same adults are desperate to justify a bad decision. Telling me that teachers are finally “using technology” since you procured Chromebooks is just an example of setting low expectations for the professionals you entrust with educating children. Making it easy to do school in a slightly more efficient manner should not be the goal. Making the impossible possible should be. Celebrating the fact that a teacher can use a Chromebook is an example of the soft bigotry of low expectations.

How low can you go?

I truly respect and appreciate that public schools are underfunded, but underpowered Chromebooks are not the answer. How cheap is cheap enough for a student “device?”

I recently purchased a 15-inch HP laptop with a touchscreen, extended keyboard, 12 GB of RAM, a 2 TB hard drive, and Windows 10 at Costco for $350. I routinely find real PC laptops capable of meeting the standards I outlined above in the $250 – $350 price range in retail stores. Imagine what the price would be if schools wished to buy millions of them!

If $250 – $350 is too expensive (it’s cheaper than playing soccer for one season), how about $35 for a Raspberry Pi, the powerful computer students can run real software on, including Mathematica, which comes free, on the Pi. A Raspberry Pi 3 computer has greater flexibility, power, and available software than a Chromebook and it costs less than my typical Dominos Pizza order.

If you’re feeling extra flush with cash, add a Raspberry Pi Zero computer to your order for the price of that delicious chocolate chip brownie concoction Dominos offers upon checkout.

The Cloud is not free and it still sucks!

One of the great misconceptions driving the adoption of “devices,” such as the Chromebook, is the promise of cloud computing. Doesn’t that just sound heavenly? The cloud….

How is the Internet access in your school? Painful? Slow? Unreliable? Have hundreds of children do all of their computing in the cloud and you may find the school network completely unusable. The future may indeed be “in the cloud,” but today works really well on personal hard drives.

The cost of upgrading your network infrastructure and then employing a high school dropout named Lenny and all of his mates to maintain the network (ie… lock, block, and tell teachers what they can and cannot do online) is much more expensive than trusting kids to save their files on their own laptop.

The Vision thing

Perhaps I missed something, but I am unaware of the educational vision supporting widespread Chromebook adoption. Google has not even faked an educational philosophy like “Think Different.”

Screwing Microsoft might be fun, even laudable, but it is not a compelling educational vision.

The Google problem

Did you hear that Google has a free salad bar and dry cleaning? How cool is that? I wish our staff room had a barista! The successful penetration of Chromebooks into schools is due in no small part to our culture’s lust for unlimited employer provided vegan smoothies. However, it would be irresponsible for educators to surrender pedagogical practice and the potential of our students to the whims of 23 year-old smartasses at any technology company. Silicon Valley could make its greatest positive impact on education by learning the lessons of history, consulting education experts, and most importantly, paying their fair share of taxes.

There are also legitimate privacy concerns about trusting a benevolent corporation with our intellectual property, correspondence, and student data. Google clearly has a lot to gain from hooking kids and their teachers on “The Google” while turning their customers into product.

The pyramid scheme known as the Google Certified Educator program turns innocent well-meaning teachers into street corner hustlers armed with a participation trophy for heroically mastering “the Google.”

Again, I do not understand why any of this reliance on Google is necessary. The average school could spend well under $100/month on its own email and web servers either on-site or co-located. Best of all, no one is reading your email and you are ultimately responsible for your own files. Let a 5th grader manage the entire operation!

The miracle of Google’s YouTube is that a company makes billions of dollars per year by delivering ad-supported stolen content to users. Any teacher who does not believe that they too are in the intellectual property business should be prepared to be replaced by a YouTube video.

Google envy makes bad education policy.

Unicorn Computing

School decision makers responsible for purchasing Chromebooks have been heard to say the following in justification of their actions.

“I had to get Chromebooks!”

The school up the street got them.

“The latest batch is so much better than the other ones we bought.”         

Why are you investing in unreliable technology and then congratulating yourself for doing it again?

“I know that the Chromebooks don’t do everything we need or want them to do, but they should soon.”

Then why did you buy Chromebooks now?

I call the actions justified by such statements unicorn computing. Peer pressure, hoping, and praying are insufficient justification for saddling teachers and children with underpowered powered unreliable devices – especially when cost-effective options exist.

In Closing…

It doesn’t matter to me if a new kind of computer captures the heart and wallets of consumers. All that matters is that scarce educational resources are used to provide students with maximum potential. If Chromebooks were the first computer ever invented and other options did not exist, I might embrace the Chromebook as a classroom option. If Chromebooks were sufficiently powerful, durable, and reliable, I’d endorse their use. When better computers are available at approximately the same price, disempowering kids and confusing teachers seems an imprudent option.

My life’s work has been dedicated to expanding rich learning opportunities for all students by helping educators embrace the tools of modernity. Much of this work has involved personal computing. From 1990, I led professional development in the world’s first two laptop schools and then countless others inspired by this work. I worked with the father of educational computing, Dr. Seymour Papert, for twenty years and was a member of the One Laptop Per Child Foundation’s Learning Group. Professionally, I have taught children to program computers across the curriculum since 1982. I learned to program in the mid-1970s, an experience that liberated my creativity and opened a window into a world of powerful ideas ever since.

I view computers as personal intellectual laboratories, ateliers, and vehicles for self-expression. The act of computing gives children agency over an increasingly complex and technologically sophisticated world. When every child owns a personal portable computer, they are able to construct knowledge “anytime anywhere,” learn-by-doing, and share their knowledge with a global audience. Computing bestows agency upon learners and allows them to embrace complexity while exploring domains of knowledge and demonstrating ways of knowing unavailable to adults just a few years ago.

There is no greater advocate for computers and computing in education than me. However, the purchasing decisions made by adults, for students, can either amplify human potential or impede learning.

Smaller cheaper computers are an attractive proposition, especially for cash-strapped schools, but I am alarmed by the widespread and too often thoughtless adoption of Google Chromebooks in education. Simply stated, the Chromebook turns back the clock on what we have learned children can do with computers in search of an immature technology.

screen-shot-2010-03-16-at-14226-pm

Seymour Papert on Capitol Hill

C-Span has now made 23 years worth of video, everything they have broadcast – 160,000 hours, available online. (Read NYTimes article) That means that some of my favorite public policy discussions, author interviews and political fireworks can be accessed and shared on-demand. The entire programs may be embedded in other web pages and an awful lot of the programs may be edited via a browser for embedding excerpts in blogs and web pages.

This is an amazing resource for teachers, learners and citizens. From time to time, I will share some of my favorite C-Span moments via this blog.

In October 1995, the House Committee Economic and Educational Opportunities and House Science Committees held a nearly three-hour hearing to examine “technological advances in education.” The first two hours or so of the hearing are a real hoot (as the kids on Capitol Hill say).

The first panel consists of the father of educational computing, Dr. Seymour Papert; Alan Kay, the inventor of the term “personal computer” and many of its accompanying technologies; an Wall Street guy who gave a lot of money to the Clinton Campaign; and Chris Dede.

Papert starts off like he was shot out of a cannon. Alan Kay says that he agrees with Seymour and then throws gasoline on the fire. The Wall Street stiff decides to argue with Dr. Papert while the Congress bangs the gavel in an attempt to restore order.

The discussion is well worth two hours of your time if you care about the edtech or the future of education.

I remember seeing the hearing when it first aired and have cherished a 3rd generation VHS recording. Now I can share it with you and my students via the Web!

When I originally saw the hearing, back in 1995, I remember thinking that the members of the Congressional Education Committee may not be our nation’s best and brightest. Watch the hearing today and you can’t help notice that naughty underage male Congressional Page sexting aficionado, Mark Foley, and convicted felon, Duke Cunningham, interrogating some of the most thoughtful educational thinkers in the world.

If the video does not appear, please use this link.