All of my friends know I have serious reservations about smarmy self-important libertarianism of TED and loathe speaking in the format – essentially a television program without any of the accoutrements of a television studio. That said, I’ve now performed three of them.

My first TEDx Talk made me ill for months before and weeks following the talk. The pressure was unbearable. You see, I wanted to go viral and become a millionaire – an overnight sensation like that guy who has taken such a courageous stance for creativity. The clock got me and I left half of my prepared thoughts on the cutting room floor. That said, people seem to like the talk anyway. For that I am grateful.

My first TED experience was so unpleasant that I sought an opportunity to try it again. This time, I promised myself that I would not stress out or over plan. That strategy paid off and the experience was a lot less traumatic. The only problem is that the venue audio was a disaster and I’m yelling through the entire talk. Don’t worry. I won’t be yelling when I publish a print anthology of these performances.

In March, I was invited by my longtime client, The American School of Bombay, to do another TEDx Talk. I assembled my vast team of advisors and brainstormed how I could turn this talk into riches beyond my wildest dreams. I quickly abandoned that idea and decided to use the occasion to honor my dear friend, mentor, and colleague, Dr. Seymour Papert in a talk I called, “Seymour Papert – Inventor of Everything*

I hope you enjoy it (or at least learn something before I lose another game of Beat the Clock)! Please share, tweet, reload the page 24/7! I have not yet given up on becoming an overnight sensation.

2014 – Seymour Papert – Inventor of Everything*

2013 – We Know What to Do

2011 – Reform™

 

Candidly, I have not been enthusiastic about teaching “computational thinking” to kids. In nearly every case, computational thinking seemed to be a dodge intended to avoid computing, specifically computer programming.

“There is no expedient to which a man will not resort to avoid the real labor of thinking.”

(Sir Joshua Reynolds)

Programming is an incredibly powerful context for learning mathematics while engaged in being a mathematician. If mathematics is a way of making sense of the world, computing is a great way to make mathematics.

Most of the examples of computational thinking I’ve come across seemed like a cross between “Computer Appreciation” and “Math Appreciation.” However, since smart people were taking “computational thinking” more seriously, I spent a great deal of time thinking about a legitimate case for it in the education of young people.

Here it is…

Computational thinking is useful when modeling a system or complex problem is possible, but the programming is too difficult.

Examples will be shared in other venues.

The following new strategy for 1:1 implementation in schools has been based on careful observation of emerging standards and implementation patterns across the globe.

Step 1:
Buy a lot of “devices” containing a rechargeable battery or allow students to bring a random assortment of “devices” to school

Step 2:
Announce that your school, district, state, or nation has “gone 1:1″

Step 3 – Step 1,000,000:
Repeat Step 2 over and over again

 

 

“Young people have a remarkable capacity for intensity….”

Those words, uttered by one of America’s leading public intellectuals, Dr. Leon Botstein, President of Bard College, has driven my work for the past six or seven years. It is incumbent on every educator, parent, and citizen to build upon each kid’s capacity for intensity otherwise it manifests itself as boredom, misbehavior, ennui, or perhaps worst of all, wasted potential.

Schools need to raise the intensity level of their classrooms!

However, intensity is NOT the same as chaos. Schools don’t need any help with chaos. That they’ve cornered the market on.

capacity500
Anyone who has seen me speak is familiar with this photograph (above). It was taken around 1992 or 1993 at Glamorgan (now Toorak) the primary school campus of Geolong Grammar school in Melbourne, Australia. The kids were using their laptops to program in LogoWriter, a predecessor to MicroWorlds or Scratch.

I love this photo because in the time that elapsed between hitting the space bar and awaiting the result to appear on the screen, every ounce of the kid’s being was mobilized in anticipation of the result. He was literally shaking,

Moments after that image was captured, something occurred that has been repeated innumerable times ever since. Almost without exception, when a kid I’m teaching demonstrates a magnificent fireball of intensity, a teacher takes me aside to whisper some variation of, “that kid isn’t really good at school.”

No kidding? Could that possibly be due to an intensity mismatch between the eager clever child and her classroom?

I enjoy the great privilege of working in classrooms PK-12 all over the world on a regular basis. This allows me observe patterns, identify trends, and form hypotheses like the one about a mismatch in intensity. The purpose of my work in classrooms is to model for teachers what’s possible. When they see through the eyes, hands, and sometimes screens of their students, they may gain fresh perspectives on how things need not be as they seem.

Over four days last month, I taught more than 500 kids I never met before to program in Turtle Art and MicroWorlds EX. I enter each classroom conveying a message of, “I’m Gary. We’ve got stuff to do.” I greet each kid with an open heart and belief in their competence, unencumbered by their cumulative file, IEP, social status, or popularity. In every single instance, kids became lost in their work often for several times longer than a standard class period, without direct instruction, or a single  disciplinary incident. No shushing, yelling, time-outs, threats, rewards, or other behavioral management are needed. I have long maintained that classroom management techniques are only necessary if you feel compelled to manage a classroom.

In nearly every class I work with – anywhere, teachers take me aside to remark about how at least one kid shone brilliantly despite being a difficult or at-risk student. This no longer surprises me.

In one particular class, a kid quickly caught my eye due to his enthusiasm for programming. The kid took my two minute introduction to the programming language and set himself a challenge instantly. I then suggested a more complex variation. He followed with another idea before commandeering the computer on the teacher’s desk and connected to the projector in order to give an impromptu tutorial for classmates struggling with an elusive concept he observed while working on his own project. He was a fine teacher.

Then the fifth grader sat back down at his desk to continue his work. A colleague suggested that he write a program to draw concentric circles. A nifty bit of geometric and algebraic thinking followed. When I kicked things up a notch by writing my own even more complex program on the projected computer and named it, “Gary Defeats Derrick.” The kid laughed and read my program in an attempt to understand my use of global variables, conditionals, and iteration. Later in the day, the same kid chased me down the hall to tell me about what he had discovered since I left his classroom that morning.

Oh yeah, I later learned that the very same terrific kid is being drummed out of school  for not being their type of student.

I learned long ago. If a school does not have bad children, it will make them.

 

Student voice is good. We should take the needs, interests, concerns, talent, curiosity, discomfort, and joy of children seriously. (pretty courageous statement, eh?)

However, if one is truly committed to making the world better for kids, “voice,” is nice, but inadequate. “Voice” absent of power is often little more than propaganda or exploitation.

While I’ve been on a brief social media “skunk at the garden party” hiatus, Dean Shareski has generously filled-in by sharing his queasiness over the “viralGoldieblox video being passed around the Web. Señor Shareski set his BS detector  on high and has provided evidence that the “amazing” Rube Goldberg machine “made by girls” is merely a commercial for a new toy called, Goldieblox.

I am shocked! Shocked!

Anyone who knows me knows that I love toys. I find buying them irresistible. I’ve been seeing Goldieblox at Maker Faires for more than a year, but have not bought a set because I think they lack extended play value (a term LEGO uses internally). I’m not one to get all outraged that a toy for girls is pink. Goldieblox just hasn’t seemed very interesting to me or the girls I work with. It’s not part of my workshop road show sweeping the globe, “Invent To Learn.”

It just doesn’t seem that Goldieblox has any chance of measuring up to the self-promotion and hype of its creator that her box of ribbon and spools is “building women engineers.” I applaud the sentiment, but if we are truly serious about improving the education of girls, it will take a lot more work than a trip to Toys R Us.

I could be wrong. I’ve recently been upgrading my initial assessment of littleBits, based on my observations of children playing with the new toy/electronics construction kit. So, perhaps I will soon fall in love with Goldieblox, but I doubt it.

Back to Monsignor Shareski…

In his post critical of the Goldidblox video, Fake and Real Student Voice, Professori Shareski awakened several repressed social media memories I had long forgotten.

I took a lot of “brown porridge” when I called BS on the very same videos of yesteryear.

There was Dalton Sherman, the “amazing” 5th grader who was coached all summer-long to give a condescending speech, written by the Dallas Schools PR department  to Dallas teachers, right before laying off 400 of them.  I smelled a rat the second I saw the video. Was called a big fat poo-poo head by teachers on social media and was right. BTW: Dalton Sherman seems to have disappeared just like those teacher jobs. So much for being the voice of school reform.

Then there was Michael Wesch (who is an important scholar) made famous by the hostage film he created in which college students decried the state of education.

Fantastic. A college class with far too many students in it (200) attempts to revolutionize the educational system by whining in a five minute web video.

I’m sorry, but count me unimpressed!

Perhaps a student should hold up a sign saying, “My professor is wasting my time and money by making me participate in a piece of exploitative propaganda in which I get to insult either my generation or the one before me just to get on YouTube.”

How did bashing our own profession become such a popular sport? What possible value could demeaning educators have in a professional development setting? Are we desperate for moving pictures or are they merely a substitute for actual ideas?

From Hey Mom! Look What I Made in College (November 2007)

Aside from their lack of authenticity, what these three AMAZING viral videos of is how children and claims of “student voice” exploit children for propaganda purposes. The Goldieblox video is a commercial selling a toy. We don’t tweet Sir Grapefellow commercials (my preferred boyhood breakfast treat) as AMAZING examples of student voice, so why the wishful thinking about Goldieblox?

Señor Shareski rightfully cites my colleague Super-Awesome Sylvia (read Super-Awesome Sylvia in the Not So Awesome Land of Schooling) as a counter example to the fake Goldieblox commercial. I have worked closely with Sylvia over the past couple of years and made her part of the Constructing Modern Knowledge faculty, not because she is cute (she is), but because she is accomplished. She knows stuff. She has skills. She has a great work ethic and  is a terrific teacher (at 12).

However, talent and achievement  did not made Sylvia immune from cynical exploitation by Rupert Murdoch and Joel Klein’s education cabal as documented in an article I wrote for the Huffington Post, Shameless Shape Shifters.

So the moral of our story is…

Three lessons…

  1. As a young blogger in 1971, The Brady Bunch taught me an important lesson relevant here, caveat emptor – buyer beware. Users of social media need to “follow the money,” have a highly-tuned BS Detector, and know when and what they are being sold.
  2. Calling everything amazing or everyone a genius is lazy and counterproductive.
  3. Student voice without what Seymour Papert calls “kid power” is worse than empty rhetoric, it is a lie. Escapism is not the same as freedom.  Too much of what is offered as “student voice” offers a false sense of agency, power, or freedom to the powerless. It is what Martin Luther King, Jr. called, “the intoxicating drug of gradualism.”

I suppose that school IT departments are a necessary evil, but that does not change the fact that 999 out of 1,000 of them are just evil.

Too many school leaders are so terrified of anything that plugs in that they surrender unprecedented budgetary authority and power to folks unworthy of such responsibility. Rather than provide support for the professional educators and children one would think they are there to serve, far too many school IT personnel add unnecessary complication and obstacles to the mission of a school. In way too many schools, teachers report to IT staff who put in place cumbersome policies that conflict with educational priorities and make computers too unreliable to have a significant impact on teaching or learning.

In 1990, I led professional development in the world’s first laptop schools. Over the next several years, I helped countless schools “go 1:1.” Until around 1995-96, most schools with 1,000 laptops employed one nice lady you went to when your computer broke. She patted you on the head, wiped your tears and called the vendor to repair the machine. In the mid-90s, everything changed. The World Wide Web decentralized computing by tying computers back together via networks, schools spent a king’s ransom worrying about nonsense like backing up kids’ data, securing the 7th grade computer lab against the Soviets, and installing draconian filtering systems that with each passing year made the Web less reliable or useful to students. Administrative ignorance of computers now had a new friend, paralyzing fear of what kids might find online. Now schools suddenly required an army of IT gatekeepers who if incompetent enough could convince their schools to hire all of their friends.

In the K-6 school where I work regularly, we managed approximately 60 laptops last year with no security, networked storage or IT personnel. I wrote the number of each laptop on its underside with a Sharpie and kids knew that if they wanted to continue working on yesterday’s file, they should go back to the same laptop they were using. Everything worked just swell. There were no maintenance issues and computers behaved as one would expect, not the figment of a computer kids have come to expect after the IT Department is done “fixing them.” Schools routinely buy a $1,000 computer and quickly turn it into a $200 “device.”  I know we constantly have to defend computers for students, but does anyone EVER question the ROI for school IT personnel?

The scenario I just described often leads me to wonder if schools really possess the maturity to have computers. We’re not preparing kids for the future if the computers they’re forced to use don’t function normally or if we confiscate a kid’s machine after they make it operational (see LAUSD iPad clown show). It’s no wonder we can’t have nice things.

Today, I saw the promised land.

I’m in Mumbai working at the American School of Bombay for a week. This is my third trip here since 2004 when I was hired by the school board to perform an audit of their computer use. This morning, I taught 60 tenth graders for three hours. We began by having all of the students spend an hour or so programming in Turtle Art and then set up three areas where kids could choose to work on MaKey MaKey projects, Arduino engineering, or wearable computing/soft-circuits.

Great stuff happened, not just because I’m a badass who can teach 60 kids I’ve never met before to program, build robots and make wearable computers, but because the school’s IT Department was there to help! Let me say that again real slowly… “The ———— IT ———- Department ——— Was —— There —— To —— Help!” Mull that over a few times.

When I arrived, the materials I requested were waiting for me. When kids hadn’t bothered to download and install the software last night, the team helped me get software onto individual laptops. When we needed Arduino manuals, the team downloaded and printed ten copies. When we were missing an item, it arrived minutes later without an interruption in the instructional program. When kids needed help, the team pitched-in and they did so with a smile on their face and pride in a job well done. They love what the kids are able to do with the materials they support. (I should also mention the terrific science and math teachers who demonstrated genuine interest and delight in the work of their students.)

The leader of the IT Team received a second-hand note from me saying that I needed some sort of bucket-shaped item for use in one of the MaKey MaKey projects I hoped to interest kids in. He went to KFC last evening and scored a half-dozen chicken buckets for our use – EXACTLY what I needed, but didn’t know where to source in India.

I see kids go to the Help Desk and (wait for it) receive help. Yup. I’ve seen it with my own eyes. Every kid who has approached the Help Desk has left happy. Every time I go to the Apple Store “Genius” Bar, I want to take hostages.

The school IT Team here at ASB is fantastic, but there is obviously a culture in place that expects and supports such greatness. There must be great clarity in their customer service mission. I am honored to work with them.

PS: The network works perfectly and as a guest I have complete access to Facebook and Twitter – booyah!

* ASB is a BYOD school, but the device is a laptop of a minimum standard. This adds complexity to keeping every user up and running, but again, no problem at all.

Note from Gary Stager…

In 1989, a great friend, colleague and pioneer in educational computing, Steve Shuller, authored the following literature review. Steve was Director of Outreach at Bank Street College during its microcomputer heyday, co-created New Jersey’s Network for Action in Microcomputer Education (N.A.M.E., now NJECC) and was a Director of the IBM Model Schools Project. Shortly before his untimely death Steve prepared this literature review for the Scarsdale, NY Public Schools, hoping that it would contribute to the end of tiresome discussions regarding keyboarding instruction.

Steve would be horrified that this trivial issue lives on in a field that has matured little in the past fourteen years. I share his work with you as a public service and in loving memory of a great educator.


Keyboarding in Elementary Schools
Curricular Issues

Stephen M. Shuller
Computer Coordinator
Scarsdale, NY Public Schools

August 1989

Introduction

We are currently in the midst of a world-wide revolution, moving from the Industrial Age to an era in which information is the primary product (Toffler 1984). As information processing tools, computers are central to this revolution. The ability to interact with computers is an essential skill for the Information Age, one which our schools will need to address to prepare our students to meet the challenges of this fundamentally changed world.

The educational reform movement of the 1980′s has recognized the importance of computers in education. For example, A Nation at Risk (1983) calls for the high school students to:

(a) understand the computer as an information, computation, and communication device;

(b) use the computer in the study of the other Basics and for personal and work-related purposes; and

(c) understand the world of computers, electronics, and related technologies. (A Nation at Risk 1983, 26)

Virtually every other reform proposal has included similar recommendations. The educational community has responded to the futurists’ visions of the Information Age and the reformers proposals by working to integrate computers into the curriculum at all levels.

At present, people interact with computers by typing words on typewriter-like keyboards. Even though computers may someday be able to understand handwriting and human speech, in the currently foreseeable future-which in the Information Age may be only a dozen years or so at best-keyboarding skills are necessary to make computers do our bidding. Thus, keyboarding is an essential enabling skill for using computers in schools and in society, and must be included in Information Age curricula (Gibbon 1987).

Even though there is virtual unanimity that students should learn to keyboard, there is considerably less agreement on how, how much, when, and by whom. This paper will consider the teaching of keyboarding in elementary schools, examining these questions as a guide for curriculum development.

Keyboarding and Typing: Historical Context

Computer keyboards are similar to typewriters, Industrial Age tools invented by Christopher Sholes in 1868 and first marketed by Remington in 1873 (Yamada 1983). By the end of the 19th Century, typewriters were considered reliable writing tools, and started becoming widely used in offices (Pea and Kurland 1987). The first typing instruction was provided by typewriter manufacturers in about 1880 (Yamada 1983). It took public schools until 1915 to begin teaching typing as a high school occupational skill (West 1983).

By the 1920′s, educators began to experiment with using the new technology-typewriters–to help children learn to write (Pea and Kurland 1987). These experiments were quite successful. In the largest-scale controlled study, Wood and Freeman (1932) followed 2383 students as they learned to write on portable typewriters over a two year period. They found that the students who used typewriters wrote with more expression, showed higher reading scores, became better spellers, and enjoyed writing more than students learning to write using conventional methods. Similarly, Merrick (1941) found that typewriters helped the English development of high school students. Even so, typewriters did not catch on in education.

In the 1960′s and early 1970′s, there was another smattering of interest in using computers in language arts (Balajthy 1988). Edward Fry, a noted reading specialist at Rutgers University, published a book on using typewriters in language arts which was not widely used. Perhaps seeing a new window of opportunity, Fry (1984) revised his text and reissued it as an approach to keyboarding in language arts.

Since we have known for more than half a century that keyboarding can help elementary school children learn language skills, why have typewriters only rarely found their way into elementary school classrooms, in sharp contrast to the current push to put computers into schools? One answer is that schools by and large reflect the perceived needs of society. Industrial Age schools resembled factories, and funds for typewriters were only available to prepare the relatively few students who would become clerks and typists. Information Age schools must prepare the vast majority of students to use computers because they are information management tools.

But why start elementary school students on computers? Here there is less direct pressure from society and more interest from educators who see the potential to enhance education. The two main factors spurring this interest are the transformation of professional writing through word processing (Zinsser 1983) and the transformation of writing instruction through the process approach (Graves 1983). Computers can greatly facilitate implementation of a process approach to teaching writing (Green 1984; Daiute 1985), so many educators are interested. In the current social milieu, the taxpayers are often willing to supply the necessary equipment.

Keyboarding in Elementary Schools: Curricular Issues

Given that we would like to use microcomputer based word processing as a tool to teach writing, what sort of keyboarding skills will elementary school students need? There seem to be three main alternatives. If they have no familiarization with the computer keyboard, they will have to “hunt and peck.” If they know where the keys are but not how to touch type, they can “peck” without much “hunting,” preferably using both hands. Finally, they can learn to touch type.

Everyone seems to agree that keyboard familiarization is in order, but whether to stop there or to teach touch typing to elementary school students is controversial. Advocates of the keyboard familiarization approach argue that students can type quickly enough to facilitate their writing without touch typing, that touch typing demands too much from limited time and computer resources, and that touch typing skills are quickly forgotten unless the students continue to practice regularly. Advocates of touch typing counter that students who develop the “bad habit” of keyboarding with two fingers find it very difficult to learn correct touch typing skills later and that such skills will ultimately be very important because of increased speed and efficiency.

There is widespread agreement that elementary students need to be able to type at least as fast as they can write by hand to avoid interfering with their writing process. A number of investigators have determined elementary school student handwriting rates. Graham and Miller (1980) found that students in grades 4 through 6 can copy text at a rate of 7 to 10 words per minute (wpm). Graves (1983) found a range of 8 to 19 wpm for 9 and 10 year olds when composing. Freyd and Kahn (1989) found an average rate of 11.44 wpm among 6th graders. With no keyboarding instruction (familiarization or touch typing), students of these ages can generally type 3 to 5 wpm (Wetzel 1985, 1987; Stoecker 1988). Different testing procedures probably accounts for most of the variation in these results. Wetzel (1987) reports that 10 wpm is generally accepted as a benchmark writing rate for students in grades 4 through 6.

Can students learn to type as fast as they can write with a keyboard familiarization program and word processing practice alone? The results are mixed. Freyd and Kahn (1989) report two studies in which students were able to type at writing speed with just keyboard familiarization and practice. one group of 6th graders started with an average rate of 6.62 wpm in October. With one hour of word processing per week, they had increased their average speed to 10.12 wpm in May. On the other hand, Daiute (1985) found that 11 and 12 year olds could write more words by hand in 15 minutes than they could type on the computer even after six months of word processing experience. Dalton, Morocco, and Neale (1988) found that 4th graders were initially comfortable word processing without touch typing instruction, but became frustrated later in the year as they needed to enter longer texts into the computer. In this study, however, students began using the word processor with no previous keyboard familiarization, so the results are not surprising.

Advocates of touch typing frequently claim that teaching touch typing to students who first learned to type without proper fingering techniques is very difficult or impossible (Kisner 1984; Stewart and Jones 1985; National Business Educators Association 1987; Abrams 1988; Balajthy 1988). No empirical evidence is presented to substantiate this claim, however. Wetzel (1987) interviewed several typing teachers, some of whomwere concerned about the “hunt and peck unlearning” problem, but others were not concerned, based on their own teaching experiences. West (1983) reports successfully teaching “hunt and peck” typists to use correct touch typing finger positions with about 10 hours of instruction.

By grade 3, children are developmentally able to touch type on electric keyboards. Advocates of touch typing generally agree that students should receive instruction just prior to the time they will need to use touch typing skills for word processing. If studen ts do not regularly practice typing, their skills can deteriorate in as little as six weeks (Warwood 1985). Wetzel (1987) found that students regress in their skills if they do not practice regularly after 20 hours of initial instruction. He cites business education research that students tend to retain their skills once they reach a plateau of 20 wpm. Gerlach (1987) ,found that with continued practice, students continue to improve their speed. In her study, 6th grade students who averaged 9.71 wpm after a 6 to 8 hour keyboarding course improved to 12.27 wpm four months later with continuing word processing practice.

Business educators have proposed a number of touch typing programs for elementary school students, some based on a recommended amount of instruction, others based on a performance criterion. Kisner (1984) recommended touch typing instruction in 20 to 30 minute periods, to a criterion of 20 wpm in Grade 3 or 25 wpm in grades 4 through 6. These recommendations seem to comefrom the experience of business education teachers with high school students rather than from keyboarding experience with elementary school children.

Jackson and Berg (1986) recommend 30 hours of instruction spread over two or three years, with weekly 30 minute review sessions. Instruction should take place in 20 to 30 minute periods, using a combination of software and a textbook. The recommended course sequence follows the traditional typing course, starting with the home row and introducing two new keys per session, with appropriate drills. Teachers should monitor the students continuously to make sure they are using proper form. Instruction should emphasize speed, not accuracy.

In 1987, the National Business Education Association (NBEA) proposed standards for keyboarding instruction in elementary schools. The NBEA recommended that elementary school students learn touch typing to a criterion of 15 wpm, and middle school students further develop their skill to a criterion of 25 wpm. Not surprisingly, the NBEA recommended that business education teachers, rather than elementary school classroom teachers, provide the instruction.

Wetzel (1985) surveyed the literature on touch typing programs for elementary school students, finding that fifth graders could be taught to touch type 22 wpm with a nine-weeks of daily instruction for 45 minutes, and fifth and sixth graders could achieve 40 wpm by spending one hour daily for a full year.

Alternatively, a more limited keyboarding instruction program consisting of instruction in correct fingering techniques and practice with a computer typing tutorial could lead to an average typing rate of 10 wpm in four weeks of 35 minute sessions or 15 wpm in nine weeks of such sessions. He also observed third, fourth, and fifth graders using word processors without touch typing instruction, finding that those who could type from 7 to 10 wpm were able to make adequate use of the computer for word processing. Given the heavy demands on teaching time in elementary schools, the relatively low level of typing skill needed to facilitate word processing and other computer activity, and the students’ ability to increase typing proficiency through continued computer use, Wetzel recommended a limited keyboarding program to accomplish a typing speed of 10 wpm in a relatively short period of time.

In a later paper, Wetzel (1987) modified these recommendations to take into account differing amounts of computer usage. If students regularly use computers at least two hours per week, Wetzel feels that they will get enough practice to sustain typing skills, justifying a 20 to 30 hour period of initial instruction in touch typing. If students characteristically use computers one hour per week or less, only a much more limited program of keyboard familiarization is recommended.

Stoecker (1988) developed a touch typing program ofinstruction designed for use by elementary school teachers. After a four week course, 20 sessions of 30 minutes each, fifth and sixth graders achieved typing rates of about 12 wpm. Stoecker’s program consists of student and teacher materials for use with any word processor. He has found that elementary school classroom teachers can learn to use this approach through a one day long training workshop.

Balajthy (1988) emphasizes the importance of integrating keyboarding instruction into the language arts curriculum. He cites recent studies showing that keyboarding can improve language arts skills, results which are consistent with the typewriter-based studies of the 1930′s and 19401s. Balajthy, like Wetzel, finds that students can achieve adequate typing skills with a limited period of keyboarding instruction-about 8 to 10 hours-followed by regular practice with computer activities. Like Stoecker, Balajthy recommends teacher- keyboarding instruction using a word processor rather than use of a software-based tutorial. Balajthy (1987) cautions that unless students have significant amounts of ongoing typing or word processing activity, touch typing instruction is a waste of time because skills will deteriorate rapidly.

One reason why Stoecker and Balajthy recommend keyboarding instruction on word processors with teacher supervision is because computer tutorials cannot monitor correct fingering and other aspects of proper touch typing. Stoecker (1988) reportsthat non-typists tend to use two fingers unless a teacherobserves. In contrast, Mikkelson and Gerlach (1988) performed acontrolled study in which third to sixth graders worked with a computer typing tutorial. Half of the students were supervised and encouraged to use proper touch typing form; the other half were observed but not supervised. The results were surprising–both groups made similar progress in typing skill, and there was no difference between groups in propensity to use correct touch typing techniques.

If Mikkelson and Gerlach’s results are generalizable, it would be possible for elementary school teachers to obtain satisfactory results by teaching touch typing through limited individual work with a computer typing tutorial. Such instruction could take place on classroom computers while other activities were taking place. If students need to be supervised to insure proper fingering techniques, then either elementary classroom teachers will need to be trained to teach touch typing or business education teachers will be needed.

Keyboarding and the Future

In their Database of Competencies for Business Curriculum Development, the NBEA defined keyboarding as follows:

Keyboarding is defined as the act of placing information into various types of equipment through the use of a typewriter-like keyboard. Typewriting and keyboarding are not synonymous. The focus of a keyboarding course is on input rather than output. (NBEA 1987, A-19)

Keyboarding is seen as a way to input information into a computer so that it can be manipulated. Thus, initial accuracy is less important than speed, ability to manipulate text is more important than formatting skills for specific types of documents, and composing is more important than transcribing (so it does not matter so much if the typist looks at the keys).

These distinctions recognize important changes in the purposes for which people type on Industrial Age typewriters and on Information Age computer keyboards. Yet, if we look closely at the keyboarding programs proposed by business educators, we find a methodology geared to the Industrial Age purpose of transcribing rather than the Information Age purpose of composing (Freyd and Kahn 1989).

This discrepancy is not surprising. As Naisbitt (1982) observed, people tend first to use a new technology in the same ways they have used older technologies which seem similar. only after a (sometimes lengthy) period of incubation do we see new directions or uses that grow out of the technology itself. So, at this point it is useful to take a step back and consider whether we might be looking at the keyboarding issue all wrong.

Graves (1983) has determined that five and six year old beginning writers compose at a painstakingly slow pace of 1.5 words per minute. At that rate, writing down a six word sentence can take up to nine minutes. Even five and six year olds who are unfamiliar with keyboards can compose more quickly and easily oncomputers than by hand (Wetzel, 1985). Graves has remarked that “one can imagine starting kids off writing on keyboards and save handwriting until motor skills are more highly refined.” (Green 1984).

Fry (1987) has proposed that schools eliminate the teaching of cursive writing and substitute keyboarding. He points out that cursive writing is not taught in European schools; students learn manuscript, and then develop their own handwriting style through shortcuts. By teaching cursive writing instead of keyboarding, Fry says, “we are training for the last century instead of for the next century.”

The issue of touch typing versus two-finger typing may be similar. Gertner and Norman (1984) have observed that the main advantage of touch typing is in copying. Copying is important for Industrial Age clerks and typists to transcribe business documents, but it is irrelevant to writers using word processing to compose and edit. By insisting on touch typing, are we training for the last century instead of for the next?

The New York State Keyboarding Curriculum

The New York State Board of Regents Action Plan to Improve Elementary and Secondary Education Results in New York calls for instruction in keyboarding to be “included in the State-developed English Language Arts Syllabus.” A state education department curriculum guide entitled Developing Keyboarding Skills to Support the Elementary Language Arts Program further stipulates that “approximately 18 to 20 hours of instruction should be devoted to keyboarding instruction within the framework of the Language Arts Program in the elementary grades.” (New York State Education Department 1986, 23).

The state keyboarding curriculum closely parallels material published by the National Business Education Association and by-state and local business education personnel. As described above, this means that the general thrust of the guide recognizes different needs and objectives between traditional typing instruction and keyboarding instruction, the recommended teaching strategies follow a more or less traditional touch typing approach. The influence of the business education community is apparent from the Suggested Readings offered in Appendix B. Of the 25 references listed on pages 29 and 30, 15 are to business education sources, and only 4 are to computer education and 3 more to general education sources.

The state curriculum clearly reflects the relative strength of business educators compared with computer coordinators in New York. For example, under “General Guidelines for Achieving Outcomes,” the guide suggests that:

business education teachers should be called upon to assist in the development of keyboarding curricula, in-service training, and selection of materials and methodology. (5)

Under “Planning for Teacher Awareness and Training:

… the business education teacher … can be very helpful in developing the plan and for training other teachers inappropriate keyboarding techniques. Business education teachers can also serve as a resource once a program is in place to conduct follow- activities as needed. (6)

Under delivery of instruction, the curriculum calls for students to learn touch typing, including correct fingering, posture, and eye contact (away from the keyboard, that is). The guide stops short of requiring business education teachers to teach the keyboarding courses, but states:

Teachers who have been trained in keyboarding methodology are of considerable importance in achieving these goals. (7)

In contrast, computer coordinators are mentioned only once in thecurriculum guide. The guide clearly views computer coordinators as technicians rather than instructional leaders, suggesting that they can be helpful in scheduling labs, repairing equipment, finding software and the like. The next sentence reminds the reader that knowledgeable high school students can also provide “considerable assistance.” (7)

To its credit, the state keyboarding guide does focus on integrating keyboarding into the language arts curriculum, as suggested by Balajthy (1988) and others. But it leans so heavily for its methodology on the perspective of the past that it is” suspect as a guide to the future.

Conclusions and Recommendations

There is widespread agreement that elementary school students need keyboarding skills. Whether keyboardfamiliarization is sufficient or whether students need touch typing skills depends on the nature of the school’s language arts and computer education curricula.

Touch typing courses are only effective if students receive a substantial period of initial instruction followed by regular practice throughout the school year. Touch typing courses can be recommended when computers are fully integrated into the language arts curriculum and when students regularly have at least two hours of individual computer time per week. In this type of environment, the initial touch typing instruction should occur at the time when students will first become involved with computers on a regular basis. The initial instruction should be provided either by specialists or by classroom teachers who have been given training in how to teach touch typing.

In situations where students make more limited use of computers, the evidence at hand suggests that a program of keyboard familiarization is sufficient to provide adequate keyboarding skills to support word processing and other uses of computers in elementary schools. Keyboard familiarization can be taught by classroom teachers assisted by appropriate computer software.

As we move further into the Information Age, fundamental changes in our school curricula will follow, paralleling the changing needs of society. Envisioning these changes, we can imagine a time when keyboarding will replace cursive writing asan essential skill for elementary school children, complementing a language arts curriculum using computers extensively for such activities as writing with word processors. Developing an Information Age language arts curriculum with keyboarding as a fundamental skill should be a central focus of our long-range curriculum planning.

References

Abrams, Jeri. “Keys to Keyboarding.” Boston Computer Society Education Special Interest Group News 4 (November/December 1988): 6-12.

Balajthy, Ernest. “Keyboarding and the Language Arts.” The Reading Teacher 41 (October 1987): 86-87.

Balajthy, Ernest. “Keyboarding, Language Arts, and the Elementary School Child.” The Computing Teacher 15 (February 1988): 40-43.

Daiute, Colette. Writing and Computers. Reading, MA: AddisonWesley, 1985.

Dalton, Bridget M., Catherine Cobb Morocco, and Amy E. Neale.

“I’ve Lost My Story!” Mastering The Machine Skills for Word Processing. Paper presented at the annual meeting of the American Educational Research Association, New Orleans, 1988.

Freyd, Pamela and Jessica Kahn. “Touch Typing in Elementary Schools-Why Bother?” In William C. Ryan, Ed. Proceedings of the National Educational Computing Conference 1989. Eugene, OR: International Council on Computers for Education, 1989.

Fry, Edward. Computer Keyboarding for Children. NY: Teachers College Press, 1984.

Fry, Edward. Quoted in “Keyboarding replacing writing: Penmanship should be out and typing in, professor says.” The Associated Press, 2 February, 1987.

Gentner, Donald and Donald Norman. “The Typist’s Touch.” Psychology Today 18 (March 1984): 67-72.

Gerlach, Gail J. The Effect of Typing Skill on Using a Word Processor-for Composition. Paper presented at the annual meeting of the American Educational Research Association, Washington, DC, 1987.

Gibbon, Samuel Y., Jr. “Learning and Instruction in the Information Age.” In Mary Alice White, Ed. What Curriculum for the Information Age? Hillsdale, NJ: Erlbaum, 1987.

Graham, Steve and Lamoine Miller. “Handwriting Research and Practice: A Unified Approach.” focus on Exceptional Children 13 (1980): 1-16.

Graves, Donald H. Writing: Teachers-and Children at Work. Exeter, NH: Heinemann, 1983.

Green, John 0. “Computers and Writing: An Interview with Donald Graves.” Classroom Computer Learning 4 (March 1984): 21-23, 28.

Jackson, Truman H. and Diane Berg. “Elementary Keyboarding-Is it important?” The Computing Teacher 13 (March 1986): 8-11.

Kisner, Evelyn. “Keyboarding-A Must in Tomorrow’s World.” The Computing Teacher 11 (February 1984): 21-22.

Koenke, Karl. “ERIC/RCS Report: Keyboarding: Prelude to Composing at the Computer-” English Education 19 (December 1987): 244-249.

McCrohan, Jane. Teaching Keyboarding: The first step in making the computer an effective writing tool. Paper presented at the New Jersey Educational Computing Conference, 1989.

McLean, Gary N. “Criteria for Selecting Computer Software for Keyboarding Instruction.” Business Education Forum 41 (May 1987): 10, 12.

Merrick, Nellie L. “Typewriting in the University High School.” School Review 49 (April 1941): 284-296.

Mikkelsen, Vincent P. and Gail Gerlach. Teaching Keyboarding Skills to Elementary School Students in Supervised and Unsupervised-Environments. ERIC Document Number ED301152, 1988.

Naisbitt, J. Megatrends: Ten New Directions Transforming our Lives. New York: Warner Books, 1982.

National Business Education Association. Database of Competencies for Business curriculum Development, K-14. ERIC Document Number ED 294064, 1987.

A Nation at Risk: The Imperative for Educational Reform (Washington, DC: U.S. Government Printing Office [1983]).

Pea, Roy D. and D. Midian Kurland. “Cognitive Technologies for Writing.” In Ernst Z. Rothkopf, Ed. Review of Educational Research, Volume 14. Washington, DC: American Educational Research Association, 1987.

Stewart, Jane and Buford Jones. “Keyboarding Instruction: Elementary School Options.” Business Education Forum 37 (1983): 11-12.

Stoecker, John W. Teacher Training for Keyboarding Instruction– 4-8: A Researched and Field Tested Inservice Model. ERIC Document Number ED290451, 1988.

Warwood, B., V. Hartman, J. Hauwiller, and S. Taylor. A Research Study to Determine the Effects of Early Keyboard Use upon Student Development in Occupational Keyboarding. Bozeman, MT: Montana State University, 1985. ERIC Document Number ED 265367.

West, L. The Acquisition of Typewriting Skills. Indianapolis, IN: Bobbs-Merrill, 1983.

Wetzel, Keith. “Keyboarding Skills: Elementary, My Dear.” The Computing Teacher 12 (June 1985): 15-19.

Wetzel, Keith. “Keyboarding-An Interview with Keith Wetzel.”

Making the Literature, Writing, Word Processing Connection. The Writing Notebook, 1987.

Wood, Ben D. and Frank N. Freeman. An Experimental Study of the Educational Influences of the Typewriter in the Elementary School Classroom. NY: MacMillan, 1932.

Yamada, Hisao. “A Historical Study of Typewriters and Typing Methods: from the Position of Planning Japanese Parallels.” In Dudley Gibson., Ed. Wordprocessing and the Electronic office. London; Council for Educational Technology, 1983.

Zinsser, W. Writing with a Word Processor. NY: Harper and Row, 1983.

In First Chance to Make a Learning Impression, my friend Will Richardson shares his disappointment with the “back-to-school” packets he just received in anticipation of his children’s next school year. Will explains how the focus of the packet is on everything but learning.

Just for fun, I set out to see how long it would take to find the word “learning” somewhere in the mix. Nothing on the first page, or the second, or the third…by the time I finally found the first instance I had stopped counting. It was a buried line in a letter from the principal explaining that due to NCLB, every teacher has to be “highly qualified” and that “every teacher continues life-long learning through professional development activities.”

Will’s 2013 article reminded me of a similar article I wrote for District Administration Magazine way back in 2004. I recommend reading Will’s article as well.

Gary Stager on One-sided Parent Contracts
Here’s a list of promises I think schools should keep
By: Gary Stager
District Administration, Sep 2004

DA Archive

The back-to-school commercials each summer fill me with dreadful flashbacks of my own days as a student. As a parent, the end of summer is signaled by a last-minute desire to squeeze in a bit more family fun and the arrival of a large ominous envelope from the local high school. The package contains countless documents commanding our immediate attention and signatures in triplicate.

This enormous collection of murdered trees contains countless rules, regulations and a list of innumerable sanctions the school intends to visit upon my child. As if this draconian catalogue of crimes and subsequent punishments were not bad enough, I am then expected to sign the documents, implying that I agree with them.

This recent and disturbing phenomenon leaves me with many unanswered questions. What if I don’t sign the forms? When did the local public school become a gulag? Was there a public meeting in The Hague at which these rules and sanctions were compiled and democratically agreed to? Is this the best way to start a fresh school year? Can I have Johnnie Cochran look over the documents before I affix my signature?

If the school expects parents to sign-off on a list of ways school discipline may be enforced, perhaps I can circulate a list of expectations for how I expect the school to educate my child. It only seems fair.

So here’s my list, in no particular order:

  • School to home communications will be proofread and spell-checked
  • Teachers will take reasonable steps to maintain expertise in their subject area
  • Homework will be purposeful and only assigned when necessary to reinforce a concept, engage in a long-term project or as the result of work not completed in-class
  • Children will be encouraged to play
  • Classroom libraries will be stocked with interesting books
  • Students will not be treated as numbers
  • Teachers will discuss current events with their students
  • Students will be encouraged to talk about books they read, not just create mobiles and book reports
  • School personnel will publish their e-mail addresses and respond to e-mail promptly
  • The school district Web site will be updated more often than every five years
  • Class sizes will be 20 or lower
  • Teachers will attend at least one professional learning event outside of the school district per year
  • Teachers will not talk down to children
  • Punishment will be viewed as a last resort
  • The school will offer rich visual and performing arts opportunities for all students
  • Curriculum will endeavor to remain relevant and connected to the world
  • Classroom rules will be developed democratically
  • There will be formal and informal opportunities for parents to interact with teachers
  • The principal will be accessible to students and parents
  • Administrators will make an effort to interact with students in positive contexts
  • Student diversity will be valued and celebrated
  • Cooperation will be valued over competition
  • The school will refrain from sorting, tracking, streaming and labeling children
  • Students will play a large role in all aspects of the life of the school;
  • Authentic forms of assessment will be used
  • A modern functioning computer will be available whenever a child needs one
  • Teachers will embrace opportunities to learn with and from students
  • The school will take teacher input seriously
  • Teachers will feel supported and encouraged to take risks
  • Effective models of professional development will be designed and include the participation of the principal
  • Equal attention and resources will be applied to the arts as to sports
The Coalition of Essential Schools offers 10 common principles for schools concerned with excellence–www.essentialschools.org/pub/ces_docs/about/phil/10cps/10cps.html

A boyhood dream has come true. I was interviewed by California School Business Magazine!

I certainly sized the opportunity to pull no punches. I left no myth behind.  Perhaps a few school business administrators will think differently about some of their decisions in the future.

A PDF of the article is linked below. I hope you enjoy the interview and share it widely!

Edtech Expert Discusses the Revolution in Computing

Laptops and Learning

Can laptop computers put the “C” (for constructionism) in Learning?
Published in the October 1998 issue of Curriculum Administrator

© 1998 – Gary S. Stager

“…Only inertia and prejudice, not economics or lack of good educational ideas stand in the way of providing every child in the world with the kinds of experience of which we have tried to give you some glimpses. If every child were to be given access to a computer, computers would be cheap enough for every child to be given access to a computer.” - Seymour Papert and Cynthia Solomon (1971)

In 1989, Methodist Ladies’ College (MLC) in Melbourne, Australia embarked on a still unparalleled learning adventure. Eighteen years after Solomon and Papert’s prediction this school made a commitment to personal computing and constructionism. The unifying principle was that every child in the school (from grades 5-12) would own a personal laptop computer on which they could work at school, at home, and across the curriculum with a belief that their ideas and work were being stored and manipulated on their own personal computer. Ownership of the laptop computer would reinforce ownership of the knowledge constructed with it. The personal computer is a vehicle for building something tangible outside of your head – one of the tenets of constructionism. By 1994, 2,000 MLC teachers and students had a personal laptop computer. This school, like most serious workplaces now has a computer ration of more than one computer per worker (teacher & student). Today, approximately 50,000 Australian school children have their own laptop. More and more American schools are embracing laptops as well.

Personal Computing – Personal Learning

Until recently, the notion of the PC and personal computing has escaped schools. Computer labs, special furniture and computer literacy curricula have been designed to make efficient use of scarce public resources. The potential benefits of using a word processor to write, edit and publish are rarely realized when access to the computer is limited and artificially scheduled. Laptops provide a personal space for creating, exploring, and collecting one’s own ideas, work, and knowledge in a more fluid manner. Pioneering schools like MLC adopted laptops for the following reasons:

The laptop is flexible, portable, personal and powerful
Students and teachers may use the computer whenever and wherever they need to. The laptop is a personal laboratory for intellectual exploration and creative expression. Learning extends beyond the walls and hours of the school.

The laptop helps to professionalize teachers
Teachers equipped with professional tools view themselves more professionally. Computers are much more likely to be integrated into classroom practice when every student has one.

Provocative models of learning will emerge
Teachers need to be reacquainted with the art of learning before they are able to create rich supportive learning environments for their students. The computer allows different ways of thinking, knowing and expressing ones own ideas to emerge. The continuous collection of learning stories serves as a catalyst for rethinking the nature of teaching and learning.

Gets schools out of the computer business
Laptops are a cost-effective alternative to building computer labs, buying special furniture and installing costly wiring. Students keep laptops for an average of three years, a turnover rate rarely achieved by schools. Built-in modems provide students with net access outside of school. The school can focus resources on projection devices, high-quality peripherals and professional development.

Since my work with the world’s first two “laptop schools” in 1990, I’ve helped dozens of similar schools (public and private) around the world make sense of teaching and learning in environments with ubiquitous computing. My own experience and research by others has observed the following outcomes for students and teachers.

Learner Outcomes

  • Students take enormous pride in their work.
  • Individual and group creativity flourishes.
  • Multiple intelligences and ways of knowing are in ample evidence.
  • Connections between subject areas become routine.
  • Learning is more social.
  • Work is more authentic, personal & often transcends the assignment.
  • Social interactions tend to me more work-related.
  • Students become more naturally collaborative and less competitive.
  • Students develop complex cooperative learning strategies.
  • Kids gain benefit from learning alongside of teachers.
  • Learning does not end when the bell rings or even when the assignment is due.

Teacher Outcomes

  • The school’s commitment to laptops convinces teachers that computers are not a fad. Every teacher is responsible for use.
  • Teachers reacquaint themselves with the joy and challenge of learning something new.
  • Teachers experience new ways of thinking, learning and expressing one’s knowledge.
  • Teachers become more collaborative with colleagues and students.
  • Authentic opportunities to learn with/from students emerge.
  • Sense of professionalism and self-esteem are elevated.
  • Thoughtful discussions about the nature of learning and the purpose of school become routine and sometimes passionate.
  • Teachers have ability to collaborate with teachers around the world.
  • New scheduling, curriculum and assessment structures emerge.

 

“I believe that every American child ought to be living in the 21st century… This is why I like laptops – you can take them home. I m not very impressed with computers that schools have chained to desks. I m very impressed when kids have their own computers because they are liberated from a failed bureaucracy …

You can’t do any single thing and solve the problem. You have to change the incentives; you’ve got to restructure the interface between human beings. If you start redesigning a learning system rather than an educational bureaucracy, if you have incentives for kids to learn, and if you have 24-hour-a-day, 7-day a week free standing opportunities for learning, you’re going to make a bigger breakthrough than the current bureaucracy. The current bureaucracy is a dying institution.” – U.S. Speaker of the House of Representatives, Newt Gingrich (Wired Magazine, August 1995)

When Seymour Papert and Newt Gingrich are on the same side of an issue, it is hard to imagine an opposing view. The fact that computers are smaller, cheaper and more powerful has had a tremendous impact on society. Soon that impact will be realized by schools. Laptop schools are clearly on the right side of history and will benefit from the experience of being ahead of trend.

Much has been said recently about the virtues of anytime anywhere learning. Laptops certainly can deliver on that promise. Integrated productivity packages may be used to write, manipulate data and publish across the curriculum. However, the power of personal computing as a potential force for learning and as a catalyst for school reform transcends the traditional view of using computers to “do work.” I encourage school leaders considering an investment in laptops to dream big dreams and conceive of ways that universal computing can help realize new opportunities for intellectual development and creative expression.