The heartbreaking tales of teachers earning $320/week and buying classroom supplies or feeding students should finally lay to rest the lie that teacher unions are all-powerful and have a stranglehold on American democracy. Nothing could be further from the truth, as evidenced by the pay and funding crisis rolling across red state America.

Arizona teacher: Daughter makes more as a nanny — CNN Video

The only way Americans will wake up to the American crisis in funding and teacher pay is for every teacher in America to go on strike. Yes, I mean it. Shut the sucker down!

In 2012, I wroteabout how the Education Minister in an Australian state said something that offended teachers and how the entire system went on strike and took to the streets until he apologized.

25,000 teachers stayed home, 10,000 marched on Parliament and they closed 150 public schools. Parents were politely alerted in advance to make other plans for the day. Many principals supported the strike and even marched with their colleagues.

Click above for news coverage of the strike

Teachers in Australia are not human piñata or professional victims. They don’t fundraise for crayons. They stand up for themselves, their students and their communities. Aussie educators enjoy medical insurance, secure pensions and enjoy long-service leave.

(Read Throw a Few Million American Teachers on the Barbie)

Don’t you dare tell me that it is illegal for teachers to strike. One thing I learned working in civilized countries, like Australia, is that there is no such thing as an illegal strike. It is a basic human right to withhold one’s labor, otherwise we are slaves.

It is time to fully wake up!

At the risk of being accused of blaming the victim, teachers have brought some of this upon themselves. Every time a teacher dismissed the role of organized labor, begged for a freebie, just followed orders, was a cheerleader on standardized testing day, failed to question the Common Core/Race-to-the-Top/No Child Left Behind, held a fundraiser for copy paper, enforce a zero-tolerance policy, or dress unprofessionally, they contributed to the neglect that America is finally becoming aware of. When teachers send their own kids to a charter school or believe that they are just like public schools, only better, they contribute to $320/week salaries. When teachers allow their voices to fall silent on matters of curriculum, assessment, calendar, or working conditions, they create the conditions for classrooms that insult the humanity of their students.

Fight, damn it! You are all that stands between kids and the madness! If you won’t fight for your own dignity and paycheck, how can we trust you to create the most productive context for learning? Go to a damned school board meeting and speak up! It is literally, the least you can do.

Normalizing deprivation

Over the past several years, I have written several articles about how common practices contribute to normalizing educational deprivation and impoverishment. We live in the richest nation in the history of the earth. Our students deserve better. So do their teachers.

Re-read and share…

 

Thoughts and Prayers Don’t Save Lives, student lie-in at the White House to protest gun laws. Author: Lorie Shaull

The clarity, courage, and commitment of the young people fighting to end school violence and ban assault weapons provides an opportunity to support kids who wish to change the world.

Here are two books I heartily recommend for teenagers.

Here Comes Trouble: Stories from My Life by Michael Moore.

Set your politics aside. It doesn’t matter whether you love or hate Michael Moore, his autobiography is deeply moving and wildly entertaining. Here Comes Trouble features hilarious and inspirational tales of how one young person’s sense of outrage can change the world. I cannot recommend this book highly enough. I have given lots of copies as gifts to young people.

The Children by David Halberstam

David Halberstam’s vivid history of the Civil Rights movement told through the stories of young people who courageously fought for voting and human rights is a must-read. Today’s young politically conscious young people would be well-served by a reminder that they stand on the shoulders of giants. The Children is one of the all-time great American history books.

For Tweens

We Were There, Too!: Young People in U.S. History by Phillip Hoose

A large lovely book to inspire tweens by the stories of kids and their role in American history.

Protest Songs for Kids

Bigger Than Yourself

John McCutcheon’s delightful record of protest songs for kids will be the hit of car trips and classroom sing-alongs. Every classroom and minivan needs a copy of Bigger Than Yourself!

America once again is in mourning over the 18th or 19th school shooting of 2018. Surely, common sense gun safety legislation is necessary, but educators also need to look in the mirror and ask why kids feel so alienated and aggrieved by schooling that they choose to shoot up their classmates and teachers.

Earlier tonight, I tweeted, “Can we please cool it with the irrational mean-spirited bullshit about banning cellphones in schools? They quite possibly saved lives today.” Immediately, I received a supportive response about the pedagogical potential of cell phones. With all due respect, this issue is much simpler and more fundamental than whether cell phones have a place in the curriculum,

There are two reasons why schools should stop banning cellphones.

  1. It is wrong to be arbitrarily mean to children. If learning is to occur, educators need to do whatever they possibly can to lower the level of antagonism between adults and children.
  2. The school has no right whatsoever to endanger my child or cut her off from communication. 

This has nothing to do with standards, teaching, or curriculum. It is a simple matter of human decency or common sense.

Then I remembered that I wrote about this very issue in the long-defunct Curriculum Administrator Magazine back in its November 2001 issue. For those of you playing along at home, that is nearly 17 years ago.

In 2001, I wrote the following in my column, Back to Rule:

Some technologies make our students and staff safer

Cell phones are perhaps the most often banned legal devices in American schools. Aside from the obvious convenience they afford, cellular phones have become lifesaving tools. In both Columbine and the terrible terrorist strikes on the World Trade Center and Pentagon, cell phones preserved life, called for help or offered comfort for family members. My childrens’ high school has unilaterally banned cell phones from the campus as have many schools across the country.

I adamantly believe that a school has no right whatsoever to jeopardize the safety of my daughter who is forced to wander a dark locked campus at 10:30 PM after drama practice. The payphones and vending machines are often more secure then the children. As a parent, it is I who should have the right to locate my child and have her call for help in case of an emergency.

Reducing classroom distractions is often cited as the rationale for this rule, but this is nonsense. If you walk into Carnegie Hall or an airplane, a polite adult asks that you please turn off your phone for the comfort or safety of those around you. Why can’t teachers do the same?

If a student disrupts the learning environment then that action should be punished in the same way we address spitballs, note passing or talking in class. It is irrational to have different rules for infractions involving electronic devices. We must address behavior, not technology. This approach will make our schools more caring, relevant, productive and secure. Our kids deserve nothing less.

Read the rest of the column for other examples of callous authoritarian school assholery and then be extra nice to some kids.

Thankfully, NYC students are no longer being robbed to store their cellphones outside of their schools

You might also be interested in my 2014 column, Why the NYC Schools Must End the Student Cellphone Ban.

We are excited to announce that the Constructing Modern Knowledge summer institute will be returning for an 11th year, July 10-13, 2018. Discount early-bird registration is now open!

Constructing Modern Knowledge 2018 Guest Speakers
Reggio Children President Carla Rinaldi • TV’s Paul DiMeo • Author/Historian James Loewen • MIT Professor Joseph Paradiso • Inventor Eric Rosenbaum

Sylvia Martinez and I created Constructing Modern Knowledge more than a decade ago to build a bridge between the learner-centered ideals of progressive educators and the modern knowledge construction opportunities afforded by new technological material. CMK 2017 was such an extraordinary success, that the summer institute tradition will continue next summer. Checkout recent project videos and read participant blog posts to appreciate why you can’t afford to miss Constructing Modern Knowledge 2018.

“For four days, throughout the ups and downs, I had a bounce in my step and a smile on my face. I still wear a large smile and speak excitedly when asked about CMK. If this is what learning can feel like, surely we all deserve to learn this way.”Kelly Watson. 5th grade teacher. Geelong, Australia.

The following is a wrap-up report on the exciting 10th anniversary Constructing Modern Knowledge institute this past July. Where else can you imagine that Alfie Kohn or Peter Reynolds just drop by?


K-12 educators from around the world gathered recently in Manchester, New Hampshire to learn about learning by learning themselves. The 10th annual Constructing Modern Knowledge summer institute, July 11-14, was the place where educators could spend four days working on personally meaningful project development combining code, cutting-edge technology, and timeless craft traditions. For a decade, CMK has demonstrated the creativity and competence of educators while challenging accepted notions of what is possible in classrooms today.

Digital arcade game

Participating educators learn to program microntrollers, design their own software, fashion wearable computers, make films, invent fanciful contraptions, bring history to life, 3D print their creations, embed Raspberry Pi computers in working machines, and much more. Each year, teachers with little or no computing or engineering experience create projects that two years earlier might have garnered them a TED Talk and five years ago might have resulted in an advanced engineering degree. When you liberate the learner lurking inside of teachers, they create the conditions for amplifying the potential of each student.

Constructing Modern Knowledge begins with a process of sharing ideas for what people would like to make. Then they then enjoy the luxury of time to pursue what might seem impossible. This year’s dozens of CMK projects included “Fitbit” sneakers that change color to indicate the number of steps you have walked (or run), digital carnival games, a helium balloon-powered drone, an automatic LEGO sorting machine and a fully programmable greenhouse. An accomplished faculty supports CMK participants, but most projects were created by educators with little or no previous experience with the technology used and they learned to invent such magnificent projects without coercion or any instruction. Constructing Modern Knowledge models the Piagetian adage, “Knowledge is a consequence of experience.” Participants at CMK take off their teacher hats and put on their learner hats to experience what learning could be in 2017.

Ayah Bdeir taking a photo of her audience

Unlike conferences where you sit through a series of lectures, CMK is about action. However, each day is punctuated by a conversation with an accomplished expert or thought leader. The past ten institutes have featured a remarkable assortment of educational visionaries, technology pioneers, and experts as guest speakers in fields your high school guidance counselor never imagined. We pride ourselves in offering educators opportunities to spend time with their heroes, rather than listen to them from afar.

Neil Gershenfeld & colleagues describe the next 50 years in 10 minutes

This year’s guest speakers included MacArthur Genius Award-winning educator Deborah Meier speaking about democracy and education, MIT Professor Neil Gershenfeld and his colleagues projecting a vision for the next 50 years of “making things,” and MaKey MaKey co-inventor Eric Rosenbaum teasing the future of Scratch. littleBits Founder and CEO, Ayah Bdeir, shared her remarkable life story and the values that make littleBits such a spectacular success. Our participants were inspired by Ayah’s presentation and delighted in sharing their work with her.

Deborah Meier & Alfie Kohn explore projects

In addition to our guest speakers and visit to the MIT Media Lab, the 10th anniversary of Constructing Modern Knowledge was celebrated by authors Alfie Kohn and Peter Reynolds visiting the institute. Participants in our pre-institute Introduction to Learning with Electronics workshop began the day learning with the new littleBits Code Kit!

Best-selling artist/author Peter Reynolds takes a project for a spin

Team discounts allow schools and universities to build community around the CMK experience and better implement what was learned in the coming school year.

“Constructing Modern Knowledge is the best “conference” you will attend as an educator searching for answers or strategies for progressive education.” Maggie Barth. School leader. North Dakota.

“Fitbit” sneakers

You don’t want to miss


Veteran teacher educator, speaker, and journalist Gary Stager, Ph.D., is the founder and CEO of Constructing Modern Knowledge. He is the co-author of Invent To Learn – Making Tinkering, and Engineering in the Classroom, called the “bible of the maker movement in schools.”

With all of the problems in the world, I know what you’ve been thinking. “I sure wish there was a new Gary Stager TED Talk to watch.” Well, your prayers to Judge Roy Moore have been answered.

Last Spring, I was headed to Germany to be in-residence at a school where my great friend, colleague, and former student, Amy Dugré, is part of the leadership team. A few weeks before my residency, I received a lovely email from tenth grade students at the International School of Dusseldorf. The letter acknowledged my forthcoming work at the school and kindly invited me to participate in a TEDx event they were organizing. The theme of the TEDx event was identity under the banner of “Who Am I?”

I told the kids that I despise all things TED and especially loathe delivering TED talks(1), but if they wanted me to participate, I would be happy to stand on the red dot and pretend to be an aspiring viral video star. Given the maturity expressed in the invitation, I hoped that my candor would lead the kids to consider reasons why some might not share their enthusiasm for TED.

In the end, the tenth graders’ charm won me over and I accepted their kind invitation.  When asked for the topic of my performance, my inner smartass kicked into gear and I came up with the title, “Care Less.”

In an attempt to further mock the pomposity of TED, I supplied the following abstract.

Any success I may have experienced is attributable to overcoming obstacles needlessly set by others and learning early on that many of the things other care deeply about, simply do not matter at all. This awesome TED talk will explore my epic quest to triumph in a world of needless prerequisites, arbitrary hierarchies, and hegemonic pathways. Caring less about the sort of compliance and schooling traditions imposed on young people may lead them to focus on finding things that bring them joy, beauty, purpose, and authentic achievement.

It is often the case that the germ of my best ideas are borne of wisecracks and this topic was no exception. Spending time in highly competitive private schools where folks too readily accept bourgeois notions of what educational preparation for the “real world” truly means leaves me convinced that I chose the right topic.

The very nature of this terrific student organized event required the TED Talks to be self-indulgent. That makes sharing my talk slightly uncomfortable. I took seriously the opportunity to speak directly to high school students who I hoped would benefit from an adult offering a different narrative from so many of their teachers and parents. I only wish I had the opportunity to give the talk more than once, but that’s the problem with TED Talks. TED is a TV show without any of the benefits of a television studio or taking the show on the road.

I wrote the talk an hour before showtime and delivered it with no monitor or timer in front of me. I’m sure that the performance suffers, but that the message may manage to be worthwhile nonetheless. I hope you or some teenagers find it interesting.

In the final analysis, I’m enormously proud of what I said. I just can’t bear to watch a second of it.


(1) Remarkably, I have now delivered four completely different TED Talks. I spent months before my first TEDx Talk (Reform™) obsessing over the high-stakes chance to go viral and become famous beyond my wildest dreams. The experience made me ill. I then decided I needed to confront my fears and asked to try it again a year later. That time, I spent virtually no time preparing and convinced myself that I didn’t give a damn (We Know What To Do). The audio at the venue was problematic, but the TED experience was less soul crushing. Just when I thought TED Talks were behind me, I was invited to give a third TEDx talk at the American School of Bombay. I have worked at the school since 2004 and felt obligated to oblige. By then, I had abandoned any hope of being a YouTube sensation or being knighted by the Queen and decided to share the legacy of my friend, mentor, and hero, Seymour Papert. People seem to appreciate that talk, Seymour Papert – Inventor of Everything*.

 

Bob Tinker at CMK 2008

The world lost a remarkable educator on June 22, 2017 when Dr. Robert Tinker passed away at the age of 75.

If your students have ever worked on a collaborative online project, taken a virtual class, used a science probe, played The Zoombinis, or used any terrific materials created by TERC or The Concord Consortium, Bob is the reason why.

A gifted scientist, Bob was brilliant, kind, patient, joyous, and generous. Like our mutual friend, Seymour Papert, Bob spent his life helping others to learn and love science and math just as much as he did. He possessed the rare empathy that allowed him to wonder why others might not learn this or that as naturally or easily as he did. Rather than blame or shame learners, Bob designed tools not to teach, but for learning. At Seymour Papert’s memorial celebration, Tod Machover quoted Papert as saying, “Everyone needs a prosthetic.” Bob Tinker was in the business of creating remarkable prosthetics useful for embracing the wonders of scientific inquiry.

I just learned that Bob fought on the front lines of the civil rights movement in Alabama, just as Papert did in South Africa. This news came as no surprise.

“My Dad was the probably the smartest man I knew (MIT PhD), and he decided to pass on earning a big salary with a Defense Contractor in order to positively impact change. With my mom at his side, during the civil rights movement they moved to the South to teach at a University that could hardly afford textbooks. They marched in dangerous areas. They worked to expose climate change. They personally funded the arts and those less fortunate. They then built the two largest science/match educational non-profits in the USA. The two NGOs employ hundreds, have trained thousands of teachers, and have educated millions of kids.” (Bob’s daughter, Facebook, June 22)

A life well lived… Online, Bob’s friends remember him as a mensch.

Long before politicians and hucksters began alarming the citizenry about the need to teach Science, Technology, Engineering, and Mathematics (S.T.E.M.) subjects as a vulgar ticket to careers, real or imagined, Bob Tinker created tools and technology that not only raised the standards for student participation in those fields, but did so in a progressive constructivist context. Not only didn’t his approach to S.T.E.M. exceed empty rhetoric and vocabulary acquisition, Bob’s work brought a broad spectrum of modern scientific domains to life in classrooms. Biology, chemistry, physics, computer science, earth science, electronics, engineering, and computational thinking were all in the mix.

Dr. Tinker delighting in a teacher’s scientific discovery

One could make a compelling argument that Bob Tinker is the father of S.T.E.M. However, I think of him as the Thomas Edison of S.T.E.M. Beyond his remarkable academic preparation, Bob was not resigned to a life of writing pretentious papers to be published in overpriced conference proceedings read by six colleagues. While there was nobody better at writing successful grant proposals, Bob and his colleagues had a stunning track record of “commercializing” their ideas. At both TERC, where he was Director of Educational Technology and The Concord Consortium he founded, Bob Tinker personified Edison’s notion of research AND development. An idea could be tested, refined, manufactured, and distributed in a reasonable timeframe. Unlike so many researchers cloistered in university departments and think tanks, Bob and his colleagues turned ideas into actual products enjoyed by millions of students around the world. Like Edison, Dr. Tinker didn’t work alone. He assembled and led an incredibly competent band of “muckers” who could bring impossible ideas to life.

Those products were sound, timely, reliable, open-ended, fun and teachable without succumbing to “teacher proofing” or dumbing down the science. There was never anything condescending about Dr. Tinker’s prolific work. Bob’s considerable charm and passion undoubtedly played a role in the creation of public/private partnerships, including with The National Geographic and Broderbund, required to successfully distribute his inventions to classrooms and homes everywhere. Bob was also a pioneer in making powerful software tools freely available online. He also preceded the DIY ethos of the maker movement by advocating for the creation of one’s own science probes in 2007!

In Bob’s world, there was no reason to add an A for Arts to S.T.E.M., since the doing of science and mathematics was itself, beautiful, wondrous, playful, creative, and relevant. Papert and Tinker shared a desire for children to be mathematicians and scientists, rather than being taught math or science. They both worked to make complexity possible by making the frontiers of mathematics and science accessible and usable by children. Bob went a step further and created programs where students could collaborate with scientists online as colleagues back in 1989, two years before the World Wide Web was released to the public. My fourth grade class participated in the National Geographic Kids Network Acid Rain project back in 1990.

In an interview Bob said:

“I became inspired to teach by tutoring two kids for two years in a black college in the South. It was the best education (for me!) anyone could design because it showed me exactly how science education could reach far more learners. I’ve dedicated my life to realizing that dream and it’s been wonderful working with smart people who share that dedication. There’s always been a sense of mission. We make important advances that will affect kids all over the world and—this was my initial motivation—bring cutting-edge educational resources to under-resourced kids.”

On a personal note

I do not remember exactly when I first met Bob Tinker, but it was at a conference approximately thirty years ago. Back then, the smartest people in the world spoke at educational computing conferences. I was familiar with his work prior to meeting him. In fact, I was a big fan of The Science Toolkit, distributed by home recreational software publisher, Broderbund. The Science Toolkit was a low-cost ($79 master module with two probes and $39 add-on sets) software package with external sensors that plugged into the joystick port of a microcomputer to allow children to conduct, measure, and record science experiments at home. This was an example of what Bob pioneered and called Micro-Based Labs (MBL).

Check out the video clip from the Christmas 1983 episode of the PBS show Computer Chronicles. Note how clean and simple the software it is and compare it some of the probeware software sold to schools today.

Prior to meeting Bob, I owned my own Science Toolkit. I was especially pleased with myself for figuring out how to program LogoWriter to read data from the kit’s probes without using the accompanying software. I could now write my own programs for collecting data, graphing it, and controlling my own experiments. I nailed using the light sensor, but my temperature data I received wasn’t particularly accurate. I eventually rationalized this as being the fault of the sensor or based on the limitations of the Science Toolkit, despite the fact that the probe worked just fine with the software provided. 

Not much time passed before I ran into Bob Tinker in one of those “V.I.P.” receptions, in the crummy “suite” of the conference chair in the forgettable hotel where the conference was being held. As I told Bob about my struggles with temperature data, he grabbed a napkin and wrote calculus formulas across all of the quadrants of the unfolded napkin. Bob mentioned that reading the temperature data was non-linear, a concept this C- science student could vaguely comprehend. While I never figured out how to translate the napkin math to a working LogoWriter program, Bob’s good cheer, gentle mentoring, and generosity reminded meow something I wrote in an essay a couple of years ago, “Math teachers often made me feel stupid; mathematicians never did.”

Maria Knee & Bob Tinker at CMK 2008

When I started the Constructing Modern Knowledge institute for educators ten years ago, Bob was the first speaker I secured. He had agreed  to return in a few weeks to help us celebrate our 10th anniversary this July.

I will never forget the joy he brought to kindergarten teacher extraordinaire, Maria Knee, who was euphoric while manipulating molecules in software Bob created (The Molecular Workbench). He and his colleagues made the impossible accessible to generations of teachers and children.

I am gutted by Bob’s passing. Losing Bob, Seymour Papert, Marvin Minsky, and Edith Ackermann within an 18-month period is almost too painful to bear. They were fountains of powerful ideas extinguished in anti-intellectual age hostile to science, even wonder. The education community does not enjoy a proud record of honoring the contributions of its pioneers or standing on their shoulders. Instead we continuously rediscover that which already exists, without attribution and with diminished expectations.

More than twenty-five years ago, Seymour Papert and Bob Tinker led a crazy or courageous session at the National Educational Computing Conference in Boston. If memory serves me, the presentation had a title along the lines of “Enemies of Constructionism.” I remember them taking turns placing acetates on the overhead projector proclaiming the name and photo of one of their enemies, including their NSF project manager who happened to be in the audience. This session had to be Seymour’s idea because Bob was too nice, but I suspect that Bob wrote the proposal.

I considered Bob a friend and dear colleague, even though we never really hung out or worked together formally. We often discussed collaborating on an elementary school project of some sort even though Bob modestly claimed not to know anything about little kids. Less than a year ago, Bob introduced me to a colleague and recommended that I be an advisor for an NSF proposal. I was honored to be asked and the grant* has been funded. While searching my email database, I found another proposal Bob himself included me in eleven years ago. I am humbled by his faith in me and respect for my work.

I wonder if ISTE will honor Bob in any way or if they even know who he is? I still await even a tweet about the passing of Dr. Papert. Like Papert, Bob Tinker was never invited to be a keynote speaker at ISTE or its predecessor, NECC.

Rest-in-power Bob. We will miss you forever and the struggle against ignorance continues!


Seminal articles by Robert Tinker, Ph.D.

Read more by searching for Tinker.

The Concord Consortium is assembling a collection of tributes to Bob Tinker here.

Read Bob Tinker’s Wikipedia page.

Notes

* Read the text of the funded NSF proposal, Science and Engineering Education for Infrastructure Transformation.

 

This June’s ISTE Conference will be my thirtieth ISTE (formerly NECC) conferences as a speaker. I suspect that I have been part of 60-80 presentations at this conference over that period – a record few if any can match. I was also part of the keynote session at NECC 2009. (watch it here)

This year’s accepted presentations are an eclectic mix. I will be sharing the stage with Sylvia Martinez about making and maker spaces. My personal sessions reflect two of my passions and areas of expertise; using technology in the context of the Reggio Emilia Approach and Logo programming.

The Reggio Emilia Approach emerges from the municipal infant/toddler centers and preschools of the Italian city, Reggio Emilia. These schools, often referred to as the best schools in the world, are a complex mix of democracy, creativity, subtlety, attention to detail, knowledge construction, and profound respect for children. There are many lessons to be learned for teaching any subject at any grade level and for using technology in this remarkable spirit. Constructing Modern Knowledge has done much to bring the Reggio Emilia Approach to edtech enthusiasts over the past decade.

I began teaching Logo programming to kids and teachers 35 years ago and even edited the ISTE journal, Logo Exchange (killed by ISTE). There is still no better way to introduce modern powerful ideas than through Logo programming. I delight in watching teachers twist their bodies around, high-fiving the air, and completely losing themselves in the microword of the turtle. During my session, I will discuss the precedents for Logo, demonstrate seminal programming activities, explore current dialects of the language, celebrate Logo’s contributions to education and the computer industry, ponder Logo’s future, and mourn the recent passing of Logo’s father, Dr. Seymour Papert.

Without Logo there might be no maker movement, classroom robotics, CS4All, Scratch, or even software site licenses.

So, what do making, Logo, and the Reggio Emilia approach have in common? Effective maker spaces have a lot to learn about preparing a productive context for learning from the educators of Reggio Emilia. Papert and the Reggio community enjoyed a longstanding mutual admiration while sharing Dewey, Piaget, and Vygotsky at their philosophical roots. Logo was used in Reggio Emilia classrooms as discussed in a recent translation of a book featuring teachers discussing student projects as a window into their thinking with Loris Malaguzzi, the father of the Reggio Emilia approach. One of the chapters in Loris Malaguzzi and the Teachers: Dialogues on Collaboration and Conflict among Children, Reggio Emilia 1990 explores students learning with Logo.

Gary Stager’s ISTE 2017 Presentation Calendar

Before You Build a Makerspace: Four Aspects to Consider [panel with Sylvia Martinez]

  • Tuesday, June 27, 1:45–2:45 pm CDT
  • Building/Room: 302A

Logo at 50: Children, Computers and Powerful Ideas

  • Tuesday, June 27, 4:45–5:45 pm CDT
  • Building/Room: Hemisfair Ballroom 2

Logo, the first computer programming language for kids, was invented in 1967 and is still in use around the world today. This session will discuss the Piagetian roots of Logo, critical aspects of its design and versions today. Anyone interested in CS4All has a lot to learn from Logo.

Logo and the fifty years of research demonstrating its efficacy in a remarkable number of classrooms and contexts around the world predate the ISTE standards and exceed their expectations. The recent President of the United States advocated CS4All while the standards listed above fail to explicitly address computer programming. Logo catalyzed a commitment to social justice and educational change and introduced many educators to powerful ideas from artificial intelligence, cognitive science, and progressive education.

Learning From the Maker Movement in a Reggio Context

  • Wednesday, June 28, 8:30–9:30 am CDT
  • Building/Room: 220

Discover how the Reggio Emilia Approach that is rooted in a half-century of work with Italian preschoolers and includes profound, subtle and complex lessons from intensely learner-centered classrooms, is applicable to all educational settings. Learn what “Reggio” teaches us about learning-by-making, making learning visible, aesthetics and PBL.

Direct interview requests to gary [at] stager.org


Gary Stager is the founder of the Constructing Modern Knowledge summer institute for educators July 11-14, 2017, coauthor of Invent To Learn – Making, Tinkering, and Engineering in the Classroom, and curator of the Seymour Papert archive site, DailyPapert.com. Register today for Constructing Modern Knowledge 2017!

Hard fun at CMK 2016!

Constructing Modern Knowledge, celebrates its 10th anniversary this July 11-14, and represents the best work of my life. Before anyone was discussing the maker movement in schools, Constructing Modern Knowledge created a four-day oasis where educators could learn-by-doing through the construction of personally meaningful projects with digital and traditional materials. From the start, CMK was never a conference. It was an institute. From its inception, CMK was designed to build a bridge between the best principles of progressive education and the constructive tools of modernity.

Wearable computing

Since our focus was the Piagetian ideal that knowledge results from experience, educators attending Constructing Modern Knowledge, when not lost in project development, engage in formal and informal conversations with some of the greatest innovators and thinkers of our age.

Dont’ miss out! Register today!

CMK Speakers are not recruited for being cute or witty, but because they were experts with a body of profound work. CMK began with guest speakers Alfie Kohn, Peter Reynolds, and digital STEM pioneer Robert Tinker. Until his death, Marvin Minsky, arguably one of the most important scientists of the past century, led eight annual fireside chats with educators at CMK. The great mathematician, scientist, and software developer Stephen Wolfram “subbed” for Professor Minsky last year.

Two of the greatest jazz musicians in history led a masterclass at CMK. Years before his daily Blog changed the media landscape and he was featured in a commercial at the start of the Academy Awards, Casey Neistat was a guest speaker at CMK 2012. Civil rights icon Jonathan Kozol spent time at CMK. Alfie Kohn and Deborah Meier engaged in a spirited conversation, as did Eleanor Duckworth and Deborah Meier. Best-selling historian James Loewen spoke at CMK nearly a decade before Southern States began dismantling confederate statues. Wonder Kid and CMK 2015 speaker, Cam Perron, is about to be honored for his extraordinary contributions to baseball. MIT Media Lab faculty have generously hosted us for eight years. Check out the list of the other amazing people who have spoken at CMK.

YouTube filmmaker and media sensation Casey Neistat spoke at CMK 2012!

One of the great joys of my life has been sharing my heroes and friends with educators. Our faculty consists of brilliant women and men who invented the technology that justified computers in classrooms. Cynthia Solomon, the last surviving member of the three people responsible for inventing the Logo programming language for kids has been with us since the beginning. Everything I know about teaching teachers I learned from Dan and Molly Watt, who abandon retirement each summer to help educators reflect upon their CMK learning adventures. Brian Silverman has had a hand in every strain of Logo, Scratch, and LEGO robotics sets for the past forty years joins us each summer. The Aussies who invented 1:1 computing have been on our faculty as have the co-inventor of the MaKey MaKey and Super-Awesome Sylvia. Sadly, we recently lost the remarkable Edith Ackermann, an elegant and profound learning theorist who worked with Piaget, Papert, and Von Glasserfeld. Edith was part of CMK for three years and touched the hearts, minds, and souls of countless educators. CMK introduced the profound work of Reggio Emilia to a new community through the participation of Lella Gandini, Lillian Katz, and the magnificent Carla Rinaldi.

Legendary author & civil rights icon Jonathan Kozol explores a CMK project

Nothing moves me more deeply than the stories of how CMK participants had coffee or went for a walk with a genius they only had access to because of our institute.

Two of the greatest learning theorists in history, Edith Ackermann & Carla Rinaldi share a laugh at CMK 2016

CMK welcomes educators of all ability levels, from newbies to tech-savvy power users, but everyone learns together from and with each other. Annually, teachers at CMK create amazing projects that might have earned them a TED talk two years or engineering Ph.D. five years ago. For example, educators at CMK 2016 created their own version of Pokemon Go a mere week after the actual software was released to great media fanfare.

Most of all, year-after-year, Constructing Modern Knowledge demonstrates that:

  • Teachers are competent
  • Knowledge is a consequence of experience
  • Learning best occurs in the absence of instruction
  • Technology supercharges learning and makes us more human, creative, expressive
  • Education can and should be non-coercive
  • Assessment is at best adjacent to learning
  • Constructionism is effective
  • Things need not be as they seem
  • It is possible to create rich productive contexts for learning without fancy architecture, bells, furniture, curriculum, tests….
  • Educators are capable of innovation and invention with bleeding edge tools
  • Learning is natural, playful, intense, whimsical, and deadly serious
  • Age segregation, tracking, and even discrete disciplines are unnecessary and perhaps counterproductive
  • A learning environment should be filled with a great variety of objects-to-think with
  • Collaboration is great as long as its natural, interdependent, flexible, mutually beneficial, and desired
  • Computer programming is the new liberal art

Although a labor of love, Constructing Modern Knowledge is a hell of a lot of work and relies on the generosity of countless colleagues. I created CMK when no other institution or organization would do so and have run ten institutes with zero funding, grants, sponsors, or vendors. I packed up the first CMK and caught a plane two hours after the 2008 institute ended. Last year, eight of us spent two and a half days packing up the 60 or so cases of books, tools, materials, and technology we ship across the USA before and after each institute.

A few of the 60+ cases that become the CMK learning environment

Our hearts swell with pride from how CMK alumni are leading schools and professional learning events all over the world. Through their efforts, the impact of Constructing Modern Knowledge will be felt by children for decades to come.

If you have read this far, I hope you will understand that 2017 may be the last Constructing Modern Knowledge. Please consider joining us.

Since CMK believes that anything a learner needs should be within reach, we build a library.

Whether or not the Constructing Modern Knowledge summer institute ends in 2017, we will continue to offer innovative learning adventures for educators around the world. Check out the CMK Futures web site to learn about bringing our expertise to your school, community, corporation, or conference.

Eric Rosenbaum (L) demonstrates the MaKey MaKey to Marvin Minsky (R) at CMK 2012

Constructing Modern Knowledge 2017 is thrilled to announce that Dr. Eric Rosenbaum will be joining our 10th annual summer institute, July 11-14 in Manchester, New Hampshire. Eric, one of the most prolific inventors of creative play materials for learners (MaKey MaKey, Beetleblocks, Singing Fingers, Coloring Cam – to name a few) will provide CMK 2017 participants with a sneak peak at the much-much-anticipated Scratch 3.0 programming environment!

Register for Constructing Modern Knowledge 2017

Dr. Rosenbaum will lead a demo and Q&A after a presentation by CMK 2017 guest speaker, Dr. Neil Gershenfeld, Director of MIT’s Center for Bits and Atoms and maker movement pioneer at our very special reception at the MIT Media Lab. Gershenfeld is author of the seminal book, Fab: The Coming Revolution on Your Desktop–from Personal Computers to Personal Fabrication, a book that created the foundation for the modern maker movement.

Eric Rosenbaum and Neil Gershenfeld join littleBits Founder and CEO, Ayah Bdeir, and MacArthur Genius-Award winning educator (and CMK favorite) Deborah Meier as guest speakers at Constructing Modern Knowledge 2017.


About Eric Rosenbaum, Ph.D.

Eric Rosenbaum earned a Ph.D. in the Lifelong Kindergarten group at MIT Media Lab, where he created new technologies at the intersection of music, improvisation, play and learning. He is currently the Senior Front End Engineer Scratch in the MIT Media Lab’s Lifelong Kindergarten Group and worked recently with the with Google Creative Lab and NYU Music Experience Design Lab. Eric’s projects include the MaKey MaKey invention kit, the Singing Fingers app for finger painting with sound, the Glowdoodle web site for painting with light, Coloring Cam app for using your camera and the world as a coloring book, MmmTsss software for improvising with looping sounds, and a Scratch-like language for creating interactive behaviors in the virtual world of Second Life.

One of his latest projects is the creation of Beetle Blocks, a visual programming language for creating 3D designs you can print. This will be Eric’s third year at Constructing Modern Knowledge.

Eric Rosenbaum on the faculty of CMK 2012

Eric holds a Bachelors degree in Psychology and a Masters degree in Technology in Education from Harvard University. He also holds a Masters degree and Ph.D. in Media Arts and Sciences from MIT Media Lab, for which he developed Jots, a system to support reflective learning in the Scratch programming environment.

Learn more about Eric here.

Register for Constructing Modern Knowledge 2017


About Constructing Modern Knowledge 2017

Constructing Modern Knowledge, July 11-14, 2017 is a minds-on institute for educators committed to creativity, collaboration and computing. For ten years CMK has been viewed as the gold standard of professional learning events at the intersection of learning-by-doing, cutting-edge technology, and progressive education.

Participants will have the opportunity to engage in intensive computer-rich project development with peers and a world-class faculty. Inspirational guest speakers and social events round out the fantastic event. Rather than spend days listening to a series of speakers, Constructing Modern Knowledge is about action. Attendees work and interact with educational experts concerned with maximizing the potential of every learner.

While our outstanding faculty is comprised of educational pioneers, bestselling authors and inventors of educational technologies we depend on, the real power of Constructing Modern Knowledge emerges from the collaborative project development of participants.

Each day’s program consists of a discussion of powerful ideas, mini tutorials on-demand, immersive learning adventures designed to challenge one’s thinking, substantial time for project work and a reflection period.

Register for Constructing Modern Knowledge 2017

Dr. Gary Stager was invited to write a profile of his friend, colleague, and mentor Dr. Seymour Papert for the premiere issue of Hello World!, an impressive new magazine for educators from The Raspberry Pi Foundation. This new print magazine is also available online under a Creative Commons license.

I suggest you explore the entire new magazine for inspiration and practical classroom ideas around the Raspberry Pi platform, “coding,” problem solving, physical computing, and computational thinking.

Gary’s article was cut due to space limitations. However, the good news, for anyone interested, is that the full text of the article appears below (with its original title).

See page 25 of the Hello World! Magazine

Seymour Papert Would have Loved the Raspberry Pi!

When Dr. Seymour Papert died in July 2016, the world lost one of the great philosophers and change-agents of the past half-century. Papert was not only a recognized mathematician, artificial intelligence pioneer, computer scientist, and the person Jean Piaget hired to help him understand how children construct mathematical knowledge; he was also the father of educational computing and the maker movement.

By the late 1960s, Papert was advocating for every child to have its own computer. At a time when few people had ever seen a computer, Papert wasn’t just dreaming of children using computers to play games or be asked quiz questions. He believed that children should program the computer.  They should be in charge of the system; learning while programming and debugging. He posed a fundamental question still relevant today, “Does the child program the computer or does the computer program the child?”  Along with colleagues Cynthia Solomon and Wally Feurzig, Papert created Logo, the first programming language designed specifically for children and learning.  MicroWorlds, Scratch, and SNAP! are but a few of the Logo dialects in use fifty years later.

Papert’s legacy extends beyond children programming, despite how rare and radical that practice remains today. In 1968, Alan Kay was so impressed by the mathematics he witnessed children doing in Logo that he sketched the Dynabook, the prototype for the modern personal computer on his flight home from visiting Papert at MIT.  In the mid-1980s, Papert designed the first programmable robotics construction kit for children, LEGO TC Logo. LEGO’s current line of robotics gear is named for Papert’s seminal book, Mindstorms. In 1993, Papert conjured up images of a knowledge machine that children could use to answer their questions, just like the new Amazon Echo or Google Home. littleBits and MaKey Makey are modern descendants of Papert’s vision.

Prior to the availability of CRTs (video displays), the Logo turtle was a cybernetic creature tethered to a timeshare terminal. As students expressed formal mathematical ideas for how they wished the turtle to move about in space, it would drag a pen (or lift it up) and move about in space as a surrogate for the child’s body, all the while learning not only powerful ideas from computer science, but constructing mathematical knowledge by “teaching” the turtle. From the beginning, Papert’s vision included physical computing and using the computer to make things that lived on the screen and in the real world. This vision is clear in a paper Cynthia Solomon and Seymour Papert co-authored in 1970-71, “Twenty Things to Do with a Computer.”

“In our image of a school computation laboratory, an important role is played by numerous “controller ports” which allow any student to plug any device into the computer… The laboratory will have a supply of motors, solenoids, relays, sense devices of various kids, etc. Using them, the students will be able to invent and build an endless variety of cybernetic systems. “ (Papert & Solomon, 1971)

This document made the case for the maker movement more than forty-five years ago. Two decades later, Papert spoke of the computer as mudpie or material with which one could not only create ideas, art, or theories, but also build intelligent machines and control their world.

From his early days as an anti-apartheid dissident in 1940s South Africa to his work with children in underserved communities and neglected settings around the world, social justice and equity was a current running through all of Papert’s activities. If children were to engage with powerful ideas and construct knowledge, then they would require agency over the learning process and ownership of the technology used to construct knowledge.

“If you can make things with technology, then you can make a lot more interesting things. And learn a lot more by making them.” – Seymour Papert (Stager, 2006)

Programming computers and building robots are a couple examples of how critical student agency was to Papert.  He inspired 1:1 computing, Maine becoming the first state on earth to give a laptop to every  7th & 8th grader, and the One Laptop Per Child initiative.

 “…Only inertia and prejudice, not economics or lack of good educational ideas stand in the way of providing every child in the world with the kinds of experience of which we have tried to give you some glimpses. If every child were to be given access to a computer, computers would be cheap enough for every child to be given access to a computer.” (Papert & Solomon, 1971)

It made Papert crazy that kids could not build their own computers. When we worked together (1999-2002) to create an alternative project-based learning environment inside a troubled teen prison, we bought PCs hoping that the kids could not only maintain them, but also eventually build their own. Despite kids building guitars, gliders, robots, films, computer programs, cameras, telescopes, and countless other personally meaningful projects uninterrupted for five hours per day – a “makerspace” as school. Back then, it was too much trouble to source parts and build “personal” computers.

In 1995, Papert caused a commotion in a US Congressional hearing on the future of education when an infuriated venture capitalist scolded him while saying that it was irresponsible to assert that computers could cost $100, have a lifespan of a decade, and be maintained by children themselves.  (CSPAN, 1995) Later Papert would be fond of demonstrating how any child anywhere in the world could repair the $100 OLPC laptop with a single screwdriver. Before Congress, he asserted that computers only seem expensive when accounting tricks compare them to the price of pencils. If used in the expansive ways his projects demonstrated, Papert predicted that “kid power” could change the world.

The Raspberry Pi finally offers children a low-cost programmable computer that they may build, maintain, expand, and use to control cyberspace and the world around them. Its functionality, flexibility, and affordability hold the promise of leveraging kid power to put the last piece in the Papert puzzle.

References:
CSPAN (Producer). (1995, 12/1/16). Technology In Education [Video] Retrieved from https://www.c-span.org/video/?67583-1/technology-education&whence=

Papert, S., & Solomon, C. (1971). Twenty things to do with a computer. Retrieved from Cambridge, MA:

Stager, G. S. (2006). An Investigation of Constructionism in the Maine Youth Center. (Ph.D.), The University of Melbourne, Melbourne.

Read more