All of my friends know I have serious reservations about smarmy self-important libertarianism of TED and loathe speaking in the format – essentially a television program without any of the accoutrements of a television studio. That said, I’ve now performed three of them.

My first TEDx Talk made me ill for months before and weeks following the talk. The pressure was unbearable. You see, I wanted to go viral and become a millionaire – an overnight sensation like that guy who has taken such a courageous stance for creativity. The clock got me and I left half of my prepared thoughts on the cutting room floor. That said, people seem to like the talk anyway. For that I am grateful.

My first TED experience was so unpleasant that I sought an opportunity to try it again. This time, I promised myself that I would not stress out or over plan. That strategy paid off and the experience was a lot less traumatic. The only problem is that the venue audio was a disaster and I’m yelling through the entire talk. Don’t worry. I won’t be yelling when I publish a print anthology of these performances.

In March, I was invited by my longtime client, The American School of Bombay, to do another TEDx Talk. I assembled my vast team of advisors and brainstormed how I could turn this talk into riches beyond my wildest dreams. I quickly abandoned that idea and decided to use the occasion to honor my dear friend, mentor, and colleague, Dr. Seymour Papert in a talk I called, “Seymour Papert – Inventor of Everything*

I hope you enjoy it (or at least learn something before I lose another game of Beat the Clock)! Please share, tweet, reload the page 24/7! I have not yet given up on becoming an overnight sensation.

2014 – Seymour Papert – Inventor of Everything*

2013 – We Know What to Do

2011 – Reform™

 

Four out of five kindergarteners agree.

foam blocks 1 smaller
.
foam blocks 2 smaller

Foam blocks suck.

 

“Young people have a remarkable capacity for intensity….”

Those words, uttered by one of America’s leading public intellectuals, Dr. Leon Botstein, President of Bard College, has driven my work for the past six or seven years. It is incumbent on every educator, parent, and citizen to build upon each kid’s capacity for intensity otherwise it manifests itself as boredom, misbehavior, ennui, or perhaps worst of all, wasted potential.

Schools need to raise the intensity level of their classrooms!

However, intensity is NOT the same as chaos. Schools don’t need any help with chaos. That they’ve cornered the market on.

capacity500
Anyone who has seen me speak is familiar with this photograph (above). It was taken around 1992 or 1993 at Glamorgan (now Toorak) the primary school campus of Geolong Grammar school in Melbourne, Australia. The kids were using their laptops to program in LogoWriter, a predecessor to MicroWorlds or Scratch.

I love this photo because in the time that elapsed between hitting the space bar and awaiting the result to appear on the screen, every ounce of the kid’s being was mobilized in anticipation of the result. He was literally shaking,

Moments after that image was captured, something occurred that has been repeated innumerable times ever since. Almost without exception, when a kid I’m teaching demonstrates a magnificent fireball of intensity, a teacher takes me aside to whisper some variation of, “that kid isn’t really good at school.”

No kidding? Could that possibly be due to an intensity mismatch between the eager clever child and her classroom?

I enjoy the great privilege of working in classrooms PK-12 all over the world on a regular basis. This allows me observe patterns, identify trends, and form hypotheses like the one about a mismatch in intensity. The purpose of my work in classrooms is to model for teachers what’s possible. When they see through the eyes, hands, and sometimes screens of their students, they may gain fresh perspectives on how things need not be as they seem.

Over four days last month, I taught more than 500 kids I never met before to program in Turtle Art and MicroWorlds EX. I enter each classroom conveying a message of, “I’m Gary. We’ve got stuff to do.” I greet each kid with an open heart and belief in their competence, unencumbered by their cumulative file, IEP, social status, or popularity. In every single instance, kids became lost in their work often for several times longer than a standard class period, without direct instruction, or a single  disciplinary incident. No shushing, yelling, time-outs, threats, rewards, or other behavioral management are needed. I have long maintained that classroom management techniques are only necessary if you feel compelled to manage a classroom.

In nearly every class I work with – anywhere, teachers take me aside to remark about how at least one kid shone brilliantly despite being a difficult or at-risk student. This no longer surprises me.

In one particular class, a kid quickly caught my eye due to his enthusiasm for programming. The kid took my two minute introduction to the programming language and set himself a challenge instantly. I then suggested a more complex variation. He followed with another idea before commandeering the computer on the teacher’s desk and connected to the projector in order to give an impromptu tutorial for classmates struggling with an elusive concept he observed while working on his own project. He was a fine teacher.

Then the fifth grader sat back down at his desk to continue his work. A colleague suggested that he write a program to draw concentric circles. A nifty bit of geometric and algebraic thinking followed. When I kicked things up a notch by writing my own even more complex program on the projected computer and named it, “Gary Defeats Derrick.” The kid laughed and read my program in an attempt to understand my use of global variables, conditionals, and iteration. Later in the day, the same kid chased me down the hall to tell me about what he had discovered since I left his classroom that morning.

Oh yeah, I later learned that the very same terrific kid is being drummed out of school  for not being their type of student.

I learned long ago. If a school does not have bad children, it will make them.

 

Papert circa 1999 enjoying the work of a middle schooler

I’ve been thinking a lot about my friend, colleague, and mentor Dr. Seymour Papert a lot lately. Our new book, “Invent to Learn: Making, Tinkering, and Engineering in the Classroom,” is dedicated to him and we tried our best to give him the credit he deserves for predicting, inventing, or laying the foundation for much of what we now celebrate as “the maker movement.” The popularity of the book and my non-stop travel schedule to bring the ideas of constructionism to classrooms all over the world is testament to Seymour’s vision and evidence that it took much of the world decades to catch up.

Jazz and Logo are two of my favorite things in life. They both make me feel bigger than myself and nurture me. Jazz and Logo provide epistemological lenses through which I view the world and appreciate the highest potential of mankind. Like jazz, Logo has been pronounced dead since its inception, but I KNOW how good it is for kids. I KNOW how it makes them feel intelligent and creative. I KNOW that Logo-like activities hold the potential to change the course of schooling. That’s why I have been teaching it to children and their teachers in one form or another for almost 32 years.

I’ve been teaching a lot of Logo lately, particularly a relatively new version called Turtle Art. Turtle Art is a real throwback to the days of one turtle focused on turtle geometry, but the interface has been simplified to allow block-based programming and the images resulting from mathematical ideas can be quite beautiful works of art. (you can see some examples in the image gallery at Turtleart.org)

Turtle Art was created by Brian Silverman, Artemis Papert (Seymour’s daughter) and their friend Paula Bonta. Turtle Art itself is a work of art that allows learners of all ages to begin programming, creating, solving problems, and engaging in hard fun within seconds of seeing it for the first time. Since an MIT undergraduate in the late 1970s, Brian Silverman has made Papert’s ideas live in products that often exceeded Papert’s expectations.

There aren’t many software environments or activities of any sort that engage 3rd graders, 6th graders, 10th graders and adults equally as Turtle Art. I wrote another blog post a year or so ago about how I wish I had video of the first time I introduced Turtle Art to a class of 3rd graders. Their “math class” looked like a rugby scrum, there was moving, and wiggling, and pointing, and sharing and hugging and high-fiving everywhere while the kids were BEING mathematicians.

Yesterday, I taught a sixth grade class in Mumbai to use Turtle Art for the first time. They worked for 90-minutes straight. Any casual observer could see the kids wriggle their bodies to determine the right orientation of the turtle, assist their peers, show-off their creations, and occasionally shriek with delight in a reflexive fashion when the result of their program surprised them or confirmed their hypothesis. As usual, a wide range of mathematical ability and learning styles were on display. Some kids get lost in one idea and tune out the entire world. This behavior is not just reserved to the loner or A student. It is often the kid you least expect.

Yesterday, while the rest of the class was creating and then modifying elaborate Turtle Art programs I provided, one sixth grader went “off the grid” to program the turtle to draw a house. The house has a long and checkered past in Logo history. In the early days of Turtle Graphics, lots of kids put triangles on top of squares to draw a house. Papert used the example in his seminal book, “Mindstorms: Children, Computers, and Powerful Ideas,” and was then horrified to discover that “making houses” had become de-facto curriculum in classrooms the world over. From then on, Papert refrained from sharing screen shots to avoid others concluding that they were scripture.

It sure was nice to see a kid make a house spontaneously, just like two generations of kids have done with the turtle. It reminded me of what the great jazz saxophonist and composer Jimmy Heath said at Constructing Modern Knowledge last summer, “What was good IS good.”

Love is all you need
This morning, I taught sixty 10th graders for three hours. We spend the first 75 minutes or so programming in Turtle Art.  Like the 6th graders, the 10th graders  had never seen Turtle Art before. After Turtle Art,  the kids could choose between experimenting with MaKey MaKeys, wearable computing, or Arduino programming. Seymour would have been delighted by the hard fun and engineering on display. I was trying to cram as many different experiences into a short period of time as possible so that the school’s teachers would have options to consider long after I leave.

After we divided into three work areas, something happened that Papert would have LOVED. He would have given speeches about this experience, written papers about it and chatted enthusiastically about it for months. Ninety minutes or so after everyone else had moved on to work with other materials, one young lady sat quietly by herself and continued programming in Turtle Art. She created many subprocedures in order to generate the image below.


Papert loved love and would have loved this expression of love created by “his turtle.” (Papert also loved wordplay and using terms like, “learning learning.” I’m sure he would be pleased with how many times I managed to use love in one sentence.) His life’s work was towards the creation of a Mathland where one could fall in love with mathematical thinking and become fluent in the same way a child born in France becomes fluent in French. Papert spoke often of creating a mathematics that children can love rather than wasting our energy teaching a math they hate. Papert was fond of saying, “Love is a better master than duty,” and delighted in having once submitted a proposal to the National Science Foundation with that title (it was rejected).

The fifteen or sixteen year old girl programming in Turtle Art for the first time could not possibly have been more intimately involved in the creation of her mathematical artifact. Her head, heart, body and soul were connected to her project.

The experience resonated with her and will stay with me forever. I sure wish my friend Seymour could have seen it.

Love,

 

 


Turtle Art is free for friends who ask for a copy, but is not open source. It’s educational efficacy is the result of a singular design vision unencumbered by a community adding features to the environment. Email contact@turtleart.org to request a copy for Mac, Windows or Linux.

A boyhood dream has come true. I was interviewed by California School Business Magazine!

I certainly sized the opportunity to pull no punches. I left no myth behind.  Perhaps a few school business administrators will think differently about some of their decisions in the future.

A PDF of the article is linked below. I hope you enjoy the interview and share it widely!

Edtech Expert Discusses the Revolution in Computing

Almost daily, a colleague I respect posts a link to some amazing tale of classroom innovation, stupendous new education product or article intended to improve teaching practice. Perhaps it is naive to assume that the content has been vetted. However, once I click on the Twitter or Facebook link, I am met by one of the following:

  1. A gee-whiz tale of a teacher doing something obvious once, accompanied by breathless commentary about their personal courage/discovery/innovation/genius and followed by a steam of comments applauding the teacher’s courage/discovery/innovation/genius. Even when the activity is fine, it is often the sort of thing taught to first-semester student teachers.
  2. An article discovering an idea that millions of educators have known for decades, but this time with diminished expectations
  3. An ad for some test-prep snake oil or handful of magic beans
  4. An “app” designed for kids to perform some trivial task, because “it’s so much fun, they won’t know they’re learning.” Thanks to sites like Kickstarter we can now invest in the development of bad software too!
  5. A terrible idea detrimental to teachers, students or public education
  6. An attempt to redefine a sound progressive education idea in order to justify the status quo

I don’t just click on a random link from a stranger, I follow the directions set by a trusted colleague – often a person in a position of authority. When I ask them, “Did you read that article you posted the link to?” the answer is often, “I just re-read it and you’re right. It’s not good.” Or “I’m not endorsing the content at the end of the link, “I’m just passing it along to my PLN.”

First of all, when you tell me to look at something, that is an endorsement. Second, you are responsible for the quality, veracity and ideological bias of the information you distribute. Third, if you arenot taking responsibility for the information you pass along, your PLN is really just a gossip mill.

If you provide a link accompanied by a message, “Look at the revolutionary work my students/colleagues/I did,” the work should be good and in a reasonable state of completion. If not, warn me before I click. Don’t throw around terms like genius, transformative or revolutionary when you’re linking to a kid burping into Voicethread!! If you do waste my time looking at terrible work, don’t blame me for pointing out that the emperor has no clothes.

Just today, two pieces of dreck were shared with me by people I respect.

1) Before a number of my Facebook friends shared this article, I had already read it in the ASCD daily “Smart” Brief. Several colleagues posted or tweeted links to the article because they yearn for schools to be better – more learner-centered, engaging and meaningful.

One means to those ends is project-based learning.  I’ve been studying, teaching and speaking about project-based learning for 31 years. I’m a fan. I too would like to help every teacher on the planet create the context for kids to engage in personally meaningful projects.

However, sharing the article, Busting myths about project-based learning, will NOT improve education or make classrooms more project-based. In fact, this article so completely perverts project-based learning that it spreads ignorance and will make classroom learning worse, not better.

This hideous article uses PBL, which the author lectures us isn’t just about projects (meaningless word soup), as a compliment to direct instruction, worksheets and tricking students into test-prep they won’t mind as much. That’s right. PBL is best friends with standardized testing and worksheets (perhaps on Planet Dummy). There is no need to abandon the terrible practices that squeeze authentic learning out of the school day. We can just pretend to bring relevance to the classroom by appropriating the once-proud term, project-based learning.

Embedding test-prep into projects as the author suggests demonstrates that the author really has no idea what he is talking about. Forcing distractions into a student’s project work robs them of agency and reduces the activity’s learning potential. The author is also pretty slippery in his use of the term, “scaffolding.” Some of the article doesn’t even make grammatical sense.

Use testing stems as formative assessments and quizzes.

The  article was written by a gentleman who leads professional development for the Buck Institute, an organization that touts itself as a champion of project-based learning, as long as those projects work backwards from dubious testing requirements. This article does not represent innovation. It is a Potemkin Village preserving the status quo while allowing educators to delude themselves into feeling they are doing the right thing.

ASCD should be ashamed of themselves for publishing such trash. My colleagues, many with advanced degrees and in positions where they teach project-based learning, should know better!

If you are interested in effective project-based learning, I’m happy to share these five articles with you.

2) Another colleague urged all of their STEM and computer science-interested friends to explore a site raising money to develop “Fun and Creative Computer Science Curriculum.” Whenever you see fun and creative in the title of an education product, run for the hills! The site is a fund-raising venture to get kids interested in computer science. This is something I advocate every day. What could be so bad?

Thinkersmith teaches computer science with passion and creativity. Right now, we have 20 lessons created, but only 3 packaged. Help us finish by summer!

My experience in education suggests that once you package something, it dies. Ok Stager, I know you’re suspicious of the site and the product searching for micro-investors, but watch the video they produced. It has cute kids in it!

So, I watched the video…

Guess what? Thinkersmith teaches computer science with passion and creativity – and best of all? YOU DON’T EVEN NEED A COMPUTER!!!!!!

Fantastic! Computer science instruction without computers! This is like piano lessons with a piano worksheet. Yes siree ladies and gentleman, there will be no computing in this computer science instruction.

A visitor to the site also has no idea who is writing this groundbreaking fake curriculum or their qualifications to waste kids’ time.

Here we take one of the jewels of human ingenuity, computer science, a field impacting every other discipline and rather than make a serious attempt to bring it to children with the time and attention it deserves, chuckleheads create cup stacking activities and simplistic games.

There are any number of new “apps” on the market promising to teach kids about computer science and programming while we should be teaching children to be computer scientists and programmers.

At the root of this anti-intellectualism is a deep-seated belief that teachers are lazy or incompetent. Yet, I have taught thousands of teachers to teach programming to children and in the 1980s, perhaps a million teachers taught programming in some form to children. The software is better. The hardware is more abundant, reliable and accessible. And yet, the best we can do is sing songs, stack cups and color in 2013?

What really makes me want to scream is that the folks cooking up all of these “amazing” ideas seem incapable of using the Google or reading a book. There is a great deal of collected wisdom on teaching computer science to children, created by committed experts and rooted in decades worth of experience.

If you want to learn how to teach computer science to children, ask me, attend my institute, take a course. I’ll gladly provide advice, share resources, recommend expert colleagues and even help debug student programs. If you put forth some effort, I’m happy to match it.

There is no expedient to which a man will not resort to avoid the real labor of thinking.
-Sir Joshua Reynolds

Don’t lecture me about the power of social media, the genius of your PLN, the imperative for media literacy or information curation if you are unwilling to edit what you share. I share plenty of terrible articles via Twitter and Facebook, but I always make clear that I am doing so for purposes or warning or parody. The junk is always clearly labeled.

Please filter the impurities out of your social media stream.You have a responsibility to your audience.

Thank you


* Let the hysterical flaming begin! Comments are now open.

Recently, 5th and 6th grade girls in the school where I work came up to me in the hallway and volunteered, “I want to be an engineer.” While this is heartwarming, especially given the political rhetoric behind the importance of S.T.E.M. and the challenges of gender underrepresentation in the sciences, I would like to draw a totally different lesson for educators.

Anyone who knows anything about my teaching knows that I would never spend any time on “career education” with kids I teach. I create the context, conditions and projects   during which children are engaged in engineering. When building and programming robots, the kids are engineers – not contemplating a career for a dozen years later. The kids are smart enough to connect the dots and identify interest in a career related to their talent, interests or present mood, even if that interest is short-lived.

Time is the rarest of currencies in school. Therefore, time should be focused on authentic experiences, not meta experiences.

Affective qualities like collaboration, passion, curiosity, perseverance and teamwork are certainly desirable for teachers and students. However, these traits may be developed while engaged in real pursuits, even within the existing curriculum. All that is required is a meaningful project. This is why I question the use of “meta” activities like ropes courses, ice-breakers or trust-building exercises as a form of professional development or separate curriculum. Professional development resources are also scarce. Therefore, PD should be focused on learning to do or know. The affective skills should be byproducts of meaningful experiences intended to improve teaching.

Adults become better teachers when they enjoy firsthand learning adventures like they desire for their students. You can’t teach 21st Century Learners  if you haven’t learned this century. That is why I created Constructing Modern Knowledge.

Some educators have recognized that schools are too impersonal and that teachers should get to know their students. I could not agree more. However, the prescription is often to create advisory courses or extend homeroom to deal with pastoral care issues. The result is one teacher who gets to “know” students and time is borrowed from other courses where teachers should get to know their students formally and informally in the process of constructing knowledge together.

Sit next to a student engaged in a science experiment and talk with them. Lead vigorous discussions or chat with a kid about the book they’re reading. You don’t need a class period set aside for asking “How was your weekend?” or for building trust. Join a group of students for lunch. Say, “hi,” while passing in the hallway. Dennis Littky tells the story of making Time Magazine because as a school principal he greeted students when they entered school in the morning. Have we lowered our expectations so much that knowing students is some sort of awesome systemic accomplishment? Humane, thoughtful, even casual interaction between teachers and students does not require an NSF grant or special class.

When educators create a productive context for learning, achievement improves, students feel more connected and behavioral problems evaporate. For three years, Seymour Papert, colleagues and I created a learner-centered, project-based alternative learning environment for at-risk learners inside of a troubled prison for teens. When the needs, interests, passions, talents and curiosity of our students were put ahead of a random list of stuff, they were not only capable of demonstrating remarkable competence, but there was not a single discipline incident in ever that required a kid to leave the classroom.

Students can develop self-esteem by engaging in satisfying work. Classroom management is not required when teachers don’t view themselves as managers. Kids can learn “digital citizenship” while learning to program, sharing code and interacting online. They can feel safe at school by forming relationships with each of their teachers. Study skills are best gained within a context of meaningful inquiry.

Learning is the best way to learn. Accept no substitutes!

Constructing Modern Knowledge may be the most important work of my career. For five years, we have demonstrated the competence and creativity of educators who spend four days of their summer vacation learning to learn in the digital age. I marvel at the complexity, sophistication and ingenuity illustrated by the educator’s projects created at Constructing Modern Knowledge. It is not an exaggeration to say that several of the projects created at CMK 2012 would have earned the creator(s) a TED Talk two years ago and an MIT Ph.D. five years ago.

CMK remains committed to creating a space where educators remake themselves by engaging in personally meaningful projects and learn through firsthand experience. It is NOT a conference. It is a samba school, laboratory, playground, library, maker space, film studio, atelier or workshop filled with people and objects to think with.

Constructing Modern Knowledge is a reflection of each participant. Some alums will say that CMK is about being at the forefront of the Maker movement, or about the Reggio Emilia approach, or about creativity, or robotics or filmmaking, or history, or school reform, or about S.T.E.M., or music composition or collaboration or visiting the MIT Media Lab. CMK is all of those things and what each participant makes of the experience.

Our remarkable faculty supports the learning of each participant and our guest speakers share a daily dose of inspiration. Given the diversity of the participants and the enormous range of projects created, CMK means different things to different people. So, what is CMK about?

Constructing Modern Knowledge is about:

  • Jamming on a cupcakeIMG_1682
  • Looking up
  • Looking in
  • Cool tools
  • Floating above the classroom
  • Bringing Edison back to life
  • Reinventing yourself
  • Painting a piano
  • Programming random Shakespearean insults
  • Giving Lego a ukulele lesson
  • Teaching a robot to use Twitter
  • Becoming the next great YouTube filmmakersmiling learners cropped
  • Getting lost in the flow
  • Learning to solder
  • Scoring a cartoon
  • Snapping lots of photos
  • Creating an animation
  • Having lunch with your hero
  • Sneaking around the MIT media lab
  • Feeling smart
  • Time lapse photography
  • Laughing really hard
  • Charging your iPhone by peddling a bike
  • Tinkering
  • Being a historian8022636190_3d5593b600_o
  • Working alone
  • Working in teams
  • Cool tools
  • Aluminum foil
  • Understanding astrophysics through dance
  • Being silly
  • Being serious
  • A digital butler keeping your beer cold
  • Engineering
  • Secret ice cream
  • Measuring your whiffle bat swing
  • Manch Vegas
  • Brightening a Rwandan child’s day
  • Flow
  • Fixing the future with air-curing rubber
  • Makey Makey
  • Conquering the geometry of islamic tiles
  • Conductive paint
  • Mathematical thinkingworking on floor cropped
  • Designing a video game
  • Making friends
  • Expanding your personal learning network
  • Feeling smart
  • Feeling foolish
  • Confusion
  • Finding science in your art and electronics in your peanut butter
  • Satisfaction
  • Scratch
  • Learning to learn
  • Bursting balloons
  • The Reggio Emilia Approach8023331155_8565f7ff3f_o
  • Clarity
  • Turning trash into treasure
  • Reading
  • MicroWorlds
  • Constructionism
  • Computer graphics
  • Storytelling
  • The 100 languages of children
  • Chatting with Marvin Minsky
  • Ingenuity
  • Choreographed t-shirtsResnick and Minsky
  • Turtle Art
  • Coffee with a legend
  • Writing
  • Progressive education
  • Creativity unleashed
  • Computing
  • An amazing faculty
  • Powerful ideaspitts2
  • Changing the world
  • A smile-controlled robot
  • Exploring linguistic patterns of the 1940s
  • Challenging yourself
  • Sounding like Eleanor Roosevelt
  • Brazilian churascaria
  • Wearable computing
  • Whimsy
  • Never finding the pool
  • Raising standards
  • Blowing your mind
  • MIDI
  • Conversation
  • Re-imagining educationx 5948920464_208e89e344_o
  • Expanding your comfort zone
  • Being super awesome
  • Taking off your teacher hat
  • Putting on your learner hat
  • Action!

Join the learning adventure with us July 9-12, 2013 in Manchester, NH!

Register today!

Download a printable brochure for Constructing Modern Knowledge 2013

 

 

Larry Ferlazzo invited me to share a vision of computers in education for inclusion in his Classroom Q&A Feature in Education Week. The text of that article is below.

You may also enjoy two articles I published in 2008:

  1. What’s a Computer For? Part 1 – It all depends on your educational philosophy
  2. What’s a Computer For? Part 2 – Computer science is the new basic skill

Technology is Not Neutral
Educational computing requires a clear and consistent stance

Gary S. Stager, Ph.D.
constructingmodernknowledge.com

There are three competing visions of educational computing. Each bestows agency on an actor in the educational enterprise. We can use classroom computers to benefit the system, the teacher or the student. Data collection, drill-and-practice test-prep, computerized assessment or monitoring Common Core compliance are examples of the computer benefitting the system. “Interactive” white boards, presenting information or managing whole-class simulations are examples of computing for the teacher. In this scenario, the teacher is the actor, the classroom a theatre, the students the audience and the computer is a prop.

The third vision is a progressive one. The personal computer is used to amplify human potential. It is an intellectual laboratory and vehicle for self-expression that allows each child to not only learn what we’ve always taught, perhaps with greater efficacy, efficiency or comprehension. The computer makes it possible for students to learn and do in ways unimaginable just a few years ago. This vision of computing democratizes educational opportunity and supports what Papert and Turkle call epistemological pluralism. The learner is at the center of the educational experience and learns in their own way.

Too many educators make the mistake of assuming a false equivalence between “technology” and its use. Technology is not neutral. It is always designed to influence behavior. Sure, you might point to an anecdote in which a clever teacher figures out a way to use a white board in a learner-centered fashion or a teacher finds the diagnostic data collected by the management system useful. These are the exception to the rule.

While flexible high-quality hardware is critical, educational computing is about software because software determines what you can do and what you do determines what you can learn. In my opinion the lowest ROI comes from granting agency to the system and the most from empowering each learner. You might think of the a continuum that runs from drill/testing at the bottom; through information access, productivity, simulation and modeling; with the computer as a computational material for knowledge construction representing not only the greatest ROI, but the most potential benefit for the learner.

Piaget reminds us ,“To understand is to invent,” while our mutual colleague Seymour Papert said, “If you can use technology to make things, you can make more interesting things and you can learn a lot more by making them.”

Some people view the computer as a way of increasing efficiency. Heck, there are schools with fancy-sounding names popping-up where you put 200 kids in a room with computer terminals and an armed security guard. The computer quizzes kids endlessly on prior knowledge and generates a tsunami of data for the system. This may be cheap and efficient, but it does little to empower the learner or take advantage of the computer’s potential as the protean device for knowledge construction.

School concoctions like information literacy, digital citizenship or making PowerPoint presentations represent at best a form of “Computer Appreciation.” The Conservative UK Government just abandoned their national ICT curriculum on the basis of it being “harmful and dull” and is calling for computer science to be taught K-12. I could not agree more.

My work with children, teachers and computers over the past thirty years has been focused on increasing opportunity and replacing “quick and easy” with deep and meaningful experiences. When I began working with schools where every student had a laptop in 1990, project-based learning was supercharged and Dewey’s theories were realized in ways he had only imagined. The computer was a radical instrument for school reform, not a way of enforcing the top-down status quo.

Now, kindergarteners could build, program and choreograph their own robot ballerinas by utilizing mathematical concepts and engineering principles never before accessible to young children. Kids express themselves through filmmaking, animation, music composition and collaborations with peers or experts across the globe. 5th graders write computer programs to represent fractions in a variety of ways while understanding not only fractions, but also a host of other mathematics and computer science concepts used in service of that understanding. An incarcerated 17 year-old dropout saddled with a host of learning disabilities is able to use computer programming and robotics to create “gopher-cam,” an intelligent vehicle for exploring beneath the earth, or launch his own probe into space for aerial reconnaissance. Little boys and girls can now make and program wearable computers with circuitry sewn with conductive thread while 10th grade English students can bring Lady Macbeth to life by composing a symphony. Soon, you be able to email and print a bicycle. Computing as a verb is the game-changer.

Used well, the computer extends the breadth, depth and complexity of potential projects. This in turn affords kids with the opportunity to, in the words of David Perkins, “play the whole game.” Thanks to the computer, children today have the opportunity to be mathematicians, novelists, engineers, composers, geneticists, composers, filmmakers, etc… But, only if our vision of computing is sufficiently imaginative.

Three recommendations:

1) Kids need real computers capable of programming, video editing, music composition and controlling external peripherals, such as probes or robotics. Since the lifespan of school computers is long, they need to do all of the things adults expect today and support ingenuity for years to come.

2) Look for ways to use computers to provide experiences not addressed by the curriculum. Writing, communicating and looking stuff up are obvious uses that require little instruction and few resources.

3) Every student deserves computer science experiences during their K-12 education. Educators would be wise to consider programming environments designed to support learning and progressive education such as MicroWorlds EX and Scratch.

I recently heard that a conference speaker told his audience, “We need fewer teachers and more facilitators.” My first reaction was, “1986 called and would like its keynote back.” My second thought was that the speaker is dead wrong!

The use of terms like “facilitator” always makes me queasy. The desire to rebrand teaching as facilitation results more from the low self-esteem of educators than either public opinion or a serious commitment to pedagogical progress. Regardless of the speaker’s intent, “teacher as facilitator” is a cliché that makes teaching sound more mechanistic and impersonal, not more. Modern medicine evolves and changes constantly, yet we still call its practitioners doctors. The invention of Viagra didn’t cause the public to make erector appointments. They call their doctor.

If one truly wants to improve the educational experience of children, then we need more teachers and fewer facilitators.

A popular parlor game among educators is debating the precise moment when “education went bad.” (Whether or not you believe there is a crisis in education.) A Nation at Risk, No Child Left Behind, Race-to-the-Top are often cited as the tipping point in the decline of K-12 education. I don’t blame a specific piece of legislation or blue-ribbon report entirely for the challenges faced by educators on a daily basis.

In my humble opinion, classrooms became less productive contexts for learning when teacher education became more concerned with training facilitators than creating teachers. The die was cast when professional educators accepted such dystopian rebranding as “facilitator.”

While earning my BA in teacher education during the early to mid-1980s, I was in the last class required to learn to play the piano a little bit, teach physical education, make puppets out of pop-tart boxes, create math manipulatives, design science experiments and setup a convivial classroom environment. When teaching was viewed as equal parts art and science, teacher education reflected that balance.

Around 1985, legislatures across the nation concluded that “teaching ain’t nuthin’” and changed credentialing requirements to ensure that teachers studied something “real” instead of education courses. Today, Teach-for-America spends five weeks preparing college grads to be teachers – less than half the time required for Marine Corps basic training and exponentially less time than I spent becoming an elementary school teacher. Educators know well that when elementary teacher preparation is less child-centered, secondary education gets even worse.

Today, new teachers truly are facilitators. They are “trained” to manage classrooms and deliver the curriculum handed to them. That’s about it.

This is great news for policy-makers and ideologues. Teachers are more compliant and less questioning than ever before. Flip the classroom? Sure! Tie teacher pay to standardized testing? Why not? Abandon labor protections secured by unionization? You betcha!

I remember being taught explicitly how to justify playing Scrabble for days or putting on a puppet show as educationally efficacious. This wasn’t just a “cover-your-ass in the plan book strategy,” but a way of understanding and articulating what your students were learning. The deafening calls for “accountability” are partially the result of teachers incapable of making learning visible. The less teachers have to think about their students’ thinking, the less thinking they do generally. Teaching needs to be thoughtful.

I have been stunned to observe the complete and utter return to whole class instruction in nearly every school I visit (public, private, rich, poor, urban, suburban and rural) everywhere in the world. New teachers have little or no experience with classroom centers, independent work, student projects and the sorts of agency that allow children to enjoy the “flow” experiences that build upon their obsessions and lead to understanding. Even when teachers are not lecturing from bell-to-bell, the classroom agenda is top-down and leaves little chance for serendipity or student initiative.

The most generous rationale for the Common Core Content Standards is that teachers lack a personal compass for what students should know and do. Teachers expert in inspiring long-term, personally meaningful and interdisciplinary projects or thematic instruction regularly exceed the standards, but that realization is lost on facilitators.

Great teachers know their students in deeper ways than any data can provide. They ask kids about their weekends. They chat about what kids are reading and console them when their hamster dies. Teachers spend thirty minutes per month in Toys R Us on the lookout for cool stuff to use in the classroom and as a means to learning about the culture of the children they serve. They learn continuously for themselves and their students. Teachers share their love of reading and are patrons of the arts. They are active citizens and engage students in current events. Outstanding teachers are not afraid to appear silly or create a whimsical classroom environment. They play in the snow with kindergarteners like Maria Knee.

The best thing we can do for children is to have them spend as much time with possible with interesting adults. So, great teachers need to be passionate, competent and interesting humans beyond the scope and sequence of the curriculum.

If we truly wish to make the world a better place for children, then we need many more teachers and a lot fewer facilitators!