I am a teacher because I delight in being in the company of nutty kids.
 
Today, I was at a school in Tasmania where I last worked nearly 20 years ago. The campus has 714 flights of stairs and my giant classroom was at the top of them. I was a bit nervous because they wanted me to work with 70 or so 6th and 7th graders on redesigning their school.
 
Since form follows function, I decided that we should spend a good deal of time thinking about the status quo and the future of learning. We did this through outrageous videos, polling, data analysis, and experimenting with my favorite unsolved number theory problem. I introduced them to Big Picture Schools, Frank Gehry preparing architects without instruction, and my friend Pete Nelson, the Treehouse Master (since that’s not a career school prepares you for). I asked them to think of wild, but not silly, ideas about the future of schools. They broke up into teams to design and build models of future learning environments.
 
The moment to begin had arrived and a kid sat alone at my table at the front of the room. At first I assumed he was a naughty kid forced to sit alone at the front of the room, but he just chose to. I could tell that the kid was listening, but he was also drawing continuously on any surface he could find. The kid seemed truly loved by the teachers I spoke with.
 
He wasn’t big on collaboration or brainstorming. So, I handed him a copy of The Language of School Design and asked him to look through it for interesting ideas he could share with his class later in the day. He inserted bookmarks as quickly as I could tear paper scraps for him. At one point in the chaos, he asked if I had headphones he could wear to listen to music.
 
I immediately thought of my great friend Peter Reynolds‘ stories of how a math teacher observed him drawing and invited Pete to make math films. Peter often talks about how that single kind gesture changed his life and made him the successful artist, author, and animator he is today.
 
So, I emailed Pete with the subject: Kid in Tasmania needs your help…
 
I asked if he would speak with the kid via email or Skype.
 
Pete wrote back right away and agreed to chat with the kid. He told me to say Howdy. When I showed the message to the kid, he literally jumped in the air and asked if he could show the email to all of his friends. I had asked a librarian to get me copies of books Pete wrote or illustrated so I could show the kid. He was already quite familiar with Pete’s work.
 
During a discussion of how we might improve education in the future, my young friend made a quite articulate case for teachers to respect kids who draw all of the time (paraphrasing, but he used the words drawing and respect).
 
Throughout the day, the kid asked me on several occasions if it was time to present his research to the class.
 
As the day was winding down, I inserted two slides into my deck:
  1. The best time of the day is… (open doorway animation)
  2. MaX Time!!!!!! (and it was time for the kid to share his architectural findings)
He was neither nervous or embarrassed by my Fozzie Bear-like introduction and managed to find some of the pages he bookmarked in order to tell us why he thought those architectural ideas were worthy of consideration.
 
At the end of the day, he shook my hand and said, “Thank you ever so much for everything today.”
 
It doesn’t get any better than that.


After six hours of working with the hordes of kids, I was driven to the primary school campus to lead a wearable electronics workshops for 30 or so kids and their parents. But, that’s a whole other set of stories…

I like Sphero and am impressed by their ability to execute as a company. Their customer service is terrific and their ability to attract the Star Wars license, publicity, and this recent New Yorker profile are unprecedented.
Sphero makes terrific toys. However, companies and reporters would be well-served by speaking with educators who understand learning and have paid some dues before making grand pronouncements about education. Simply comprehending the differences between teaching and learning would be a welcome first step.
 
The article’s ad-hominem attacks on Logo in favor of C for god’s sake shows just how profoundly misguided the “Coding” newbies happen to be. History does not begin with them. Every thought they have, no matter how unimaginative or unoriginal is not automatically superior to the work done by those of us who have taught kids and teachers to program for decades. David Ahl told me that Creative Computing Magazine had 400,000 subscribers in 1984. Thirty years ago, my friend and Constructing Modern Knowledge faculty member, Dr. Dan Watt, sold more than 100,000 books of Learning with Logo. Tens of thousands of educators taught children to program in the 1980s and then again after laptops were introduced in the 1990s. This was not for an hour, but over sufficient time to develop fluency.
 
It takes real balls for every other startup company, politician, and Silicon Valley dilettante to advocate for “coding” with a macho certainty suggesting that learning to program is a novel idea or accomplished in an hour.

Sphero is hardly the first programmable robot. My friend Steve Ocko developed Big Trak for Milton Bradley in the late 1970s. Papert, Resnick, Ocko, Silverman, et al developed LEGO TC Logo, the first programmable LEGO building system in 1987. (Watch Seymour Papert explain the educational benefits in 1987)

Apologies to The New Yorker, but balls don’t teach kids to code. Kids learn to code by teaching balls. Find yourself a copy of Mindstorms, 35 years-old this year, and you’ll understand.
 

Sphero

Sphero is a fun toy that may be programmed IN Logo – the best of both worlds. Tickle for iOS is a version of Scratch (and Scratch is Logo) whose secret sauce is its ability to program lots of toys, several made by Sphero.

 
Logo turns 50 years-old next year. Let’s see what Silicon Valley creates that children learn with for more than 50 days.

Tickle (Scratch/Logo) for iOS and Bluetooth devices

Related articles:

Professional learning opportunities for educators:

Constructing Modern Knowledge offers world-class hands-on workshops across the globe, at schools, conferences, and museums. During these workshops, teachers learn to learn and teach via making, tinkering, and engineering. Computer programming (coding) and learning-by-making with a variety of materials, including Sphero and Tickle. For more information, click here.

Progressive Education and The Maker Movement – Symbiosis or Mutually Assured Destruction

Published paper of keynote address at 2014 FabLearn Conference at Stanford University by
Gary S. Stager, Ph.D.
Constructing Modern Knowledge
21825 Barbara Street Torrance, CA 90503 USA
gary@stager.org

Download PDF version

Keywords: Progressive education, education reform, mathematics education, constructionism, educational computing, maker movement

 

Abstract

In this paper, the author shares three societal trends that validate and vindicate decades of leadership by constructionist educators. The growing acceptance of learning-by-making represented by the maker movement, a newfound advocacy for children learning computer programming, and even the global education crisis, real or imagined, are evidence of predictions and efforts made by constructionists being realized. The paper also asserts that the survival of progressive education and the maker movement are mutually dependent. This conference offers a brief opportunity for celebration before returning to the “hard fun” required to harness the momentum of these trends and improve the learning ecology.

 

Paper

Three societal trends afford members of the constructionism community with cause for optimism. While two of these trends are positive and one negative, their trajectory is towards a greater acceptance of constructionist learning by formal and informal communities of practice. Recognition of the symbiotic relationship between progressive education, its learning theory constructionism, and the long-term survival of what has come to be known as “the maker movement” is critical for the long-term survival of each. Progressive education and the maker movement are at a crossroads when both rely on the other for relevance and acceptance.

The general population has begun to recognize that knowledge is a consequence of experience and that technology can play a role in the construction of knowledge. This revelation is an act of constructionism in and of itself. Despite our decades of paper writing, conference attendance and teacher training, people unfamiliar with the term are constructing constructionism without being taught. Such “popular constructionism,” is manifest in explosive growth of the global maker movement and a revaluing of children learning to program. Such progress is accompanied by a backlash by the formal system of schooling, just as Seymour Papert predicted nearly a quarter century ago. (Papert, 1991)

 

THE MAKER MOVEMENT

At Constructionism 2012, there were concerns expressed about the maker movement that to be candid, smacked of elitism. While it may be true that the moms, dads, and teachers advocating for making may lack a scholarly vocabulary for expressing principles of constructionist learning, they are not hostile to that information. The popularity of Maker Faire, Hour of Code, Scratch, and books like, “Invent To Learn – Making, Tinkering, and Engineering in the Classroom,” are proof of a desire to learn more about learning. It is also the case that academics in the constructionism community would benefit from learning what members of the maker movement know and can do. The elements of community organization and creative spirit of the maker movement are to be admired.

As we assert in our book, (Martinez & Stager, 2013) Papert is not only the “father” of constructionism, but of the maker movement as well. In “Computer as Material: Messing About with Time” (Papert & Franz, 1987) and earlier, “Computer as Mudpie,” (Papert, 1984) Papert described a new role for the computer as part of a continuum of construction materials, albeit one imbued with protean qualities. (Papert, 1980)

“If you can use technology to make things you can make a lot more interesting things. And you can learn a lot more by making them. This is especially true of digital technology.” (G. S. Stager, 2006)

Papert not only provided the basis for constructionism as a learning theory, but also played a pivotal role in predicting, inventing, and advocating for the constructive technology now being popularized by the maker movement. Long before his involvement in the development of programmable LEGO robotics kits or being an advocate for one-to-one computing, made the case for such innovations and even expressed the importance of hardware extensibility.

In 1970, Papert and Solomon described the sophisticated technological needs of young children engaged in making things with computers.

“The school computer should have a large number of output ports to allow the computer to switch lights on and off, start tape recorders, actuate slide projectors and start and stop all manner of little machines. There should also be input ports to allow signals to be sent to the computer.

In our image of a school computation laboratory, an important role is played by numerous “controller ports” which allow any student to plug any device into the computer… The laboratory will have a supply of motors, solenoids, relays, sense devices of various kids, etc. Using them, the students will be able to invent and build an endless variety of cybernetic systems.” (Papert & Solomon, 1971)

Neil Gershenfeld, one of the leaders of the personal fabrication movement who predicted much of the current maker movement, recounts how Papert viewed the inability of children to construct their own computers as a “thorn in our flesh.” (Gershenfeld, 2005) The availability of the $35 Raspberry Pi and its offspring the Beaglebone, Yun, Gallileo, and other low-cost Linux computers, all with an ability to interface with the world, removes that thorn. Each of these tiny computers are capable of running Scratch, Snap!, Python, and Turtle Art. They also feature a range of inputs and outputs for extensibility. Scavenging for peripherals to use with such a computer, customizing it, and programming it to solve personally important problems is consistent with both maker and constructionist ideals. The computer hardware industry and leaders in the educational computing world have spent decades deriding Papert’s claims that children should build, program, maintain, and repair their own computers, not merely to reduce costs, but as an expression of agency over an increasingly complex, technologically sophisticated world. Emerging technology, like the Raspberry Pi, is resonant with the maker ethos of “If you can’t open it, you don’t own it,” (Jalopy, Torrone, & Hill, 2005) and ideals expressed by Seymour Papert long ago.

Papert’s colleagues or former students created many of the favorite technologies of the maker movement, including Scratch, Makey Makey, the Lilypad, and LEGO robotics. The FabLab and FabLab@School efforts to spread learning through digital fabrication also acknowledge Papert’s inspiration.

 

Making Megachange?

Modern making is a brew of new technologies, computation, and timeless craft traditions. The artificial boundaries between disciplines blur and enrich each other.

“So, too, the mega-change in education that will undoubtedly come in the next few decades will not be a “reform” in the sense of a deliberate attempt to impose a new designed structure. My confidence in making this statement is based on two factors: (1) forces are at work that put the old structure in increasing dissonance with the society of which it is ultimately a part, and (2) ideas and technologies needed to build new structures are becoming increasingly available.” (Papert, 2000b)

Attend a Maker Faire and you will marvel at the ingenuity, creativity, passion for learning, and desire to share knowledge on display. Maker Faire provides a venue for collaboration, showing-off, and sharing personal inventions. The creation of shareable artifacts is a basic tenet of constructionism. (Ackermann, 2001) Maker Faires, Make Magazine, and web sites like instructables.com provide unprecedented venues for sharing technological project ideas and products.

Look in any direction at a Maker Faire and you will discover children and adults learning and creating together “samba school style.” (Papert, 1980) Kids like Super-Awesome Sylvia, Joey Hudy, Quin Etnyre, Caine Monroy, and Schuyler St. Leger embody Papert’s belief in “kid power.” (Generation_WHY, 1998; Papert, 1998) These, and other children, are beloved heroes, legends, and leaders of the maker movement, not because they are cute, but due to their demonstrable talent, knowledge, and expertise. Like in a samba school, these young experts value their interaction with elders because they share a common goal of continuous growth.

There were one hundred officially sanctioned Maker Faires and Mini Maker Faires around the world in 2013. These events attracted over 530,000 participants. Attendance increased 64% since 2012 and 335% since 2011. “Maker Faire organizers are influencing local education initiatives, encouraging hands-on learning in Science, Technology, Math, Science (STEM) and Art (STEAM) curricula.” 27% of Maker Faire organizers in 2013 were museums and many Maker Faire organizers are creating or expanding community-based makerspace-type facilities where the community may learn together outside of a school setting. (Merlo, 2014)

Those explosive numbers only tell part of the story of the explosive growth in making and its influence on winning hearts and minds for constructionism. Maker Faires and Mini Maker Faires are official events sanctioned by Maker Media resulting from a formal application process. Countless other events led by local hackerspaces, clubs, scout troops, plus school-based maker days and Invent to Learn workshops are doing an impressive job of laying the groundwork for a rise in the appeal of constructionism.

Parents in highly competitive independent schools are becoming champions of constructionism based on the benefits of making they witnessed in their own children. Such parental enthusiasm gives lie to the notion that parents want joyless schools focusing on increasing test scores and provide much needed support for educators sympathetic to constructionism, but beaten down by the status quo. After parents at The American School of Bombay participated in a half-day “Invent To Learn” workshop with their children, they began demanding that classroom practice change to incorporate more making.

The maker movement and its accompanying “constructible” technology has resuscitated constructionism in a New York City public school started by Carol Sperry and Seymour Papert in the early 1980s. (Papert & Franz, 1987) Without Tracy Rudzitis’ impromptu lunchtime “Maker Space,” where the folding tables and freedom transform the learning experience for middle school students, computing would be dead at “The Computer School.” (G. Stager, 2014) In countless settings, the “neat phenomena” associated with popular maker technologies, such as 3D printing, Arduino, Makey Makey, squishy circuits, wearable computing, and conductive paint have caused schools to revive school art and music programs, otherwise sacrificed on the altar of budget cuts, tougher standards, or global competitiveness.

The publication of the Next Generation Science Standards, authored by the National Academy of Sciences, (Quinn, Schweingruber, & Keller, 2012) includes specific demands for computer science, engineering, tinkering, and hands-on scientific inquiry to be part of the diet of every American. These standards, written by actual scientists, add gravitas to what some might deride as the playful act of making.

“I think the technology serves as a Trojan horse all right, but in the real story of the Trojan horse, it wasn’t the horse that was effective, it was the soldiers inside the horse. And the technology is only gong to be effective in changing education if you put an army inside it which is determined to make that change once it gets through the barrier.” (Papert, 1999)

 

BILLIONAIRES DISCOVER CODING

Since Constructionism 2012, Silicon Valley executives, pop-stars, basketball players, politicians, government ministers, and the President of the United States have called for children to learn to code. (note: apparently computer programming is now called, “coding.”)

If you view programming as an intellectually rewarding activity, then it is surely good news that countless millions of dollars are being spent on initiatives like Code.org, Code Academy, and the creation of computer science instruction via Khan Academy.

Mark Guzdial identifies three reasons for learning to program:

  1. That’s where the future jobs are, in the mix of computing with other disciplines.
  2. The second reason is that a liberal education is about understanding one’s world, and computing is a huge part of today’s world. We ask students to take laboratory sciences (like biology, chemistry, and physics) in order to better understand their world and to learn the scientific method for learning more about their world. The virtual world is an enormous part of the daily lives of today’s professionals. Understanding computing is at least as important to today’s students as understanding photosynthesis.
  3. If you understand something well, you should be able to define its process well enough for a machine to execute it. If you can’t, or the execution doesn’t match the observed behavior, we have a new kind of feedback on our theories.

Regrettably, the impetus behind the current desire for “kids to code” seems more rooted in economic insecurity and foreign job killers than recognition that programming is a good way to understand formal systems, make sense of the world or answer Papert’s timeless question, “Does the child program the computer or the computer program the child?”

The pedagogical approach preferred by the coding proponents appears to be, “kids will go on the Web and figure it out.” In that case, the same paltry percentage of kids is likely to develop programming fluency now than before great wealth and media attention was dedicated to the cause.

Although well intentioned and surely better than another generation of children doing little more with a computer than preparing an occasional PowerPoint presentation on a topic they don’t care about for an audience they will never meet, the advocates of coding seem wholly ignorant that many teachers used to teach children to program during the 1980s. Many of these educators taught Logo and the Logo community developed a great deal of wisdom regarding how, what, why, and when to teach children to program. Dozens of books were written and hundreds of thousands of copies were sold. We danced recursion and acted out procedureality. Now, that knowledge base is largely ignored in favor of catchy slogans and YouTube videos. The constructionism community has a wealth of knowledge to share with coding proponents and a great number of questions as well.

  • Which programming languages are best for children to use and why?
  • Is computational thinking a fancy term for what Alan Kay calls “computer appreciation?” (Kay, 1996) Is this just a way of providing the illusion of computing without sufficient access or actual experience?
  • What are the goals of learning to program?
  • How does computer programming support, enhance or build upon other intellectual processes?
  • What can kids make with a computer?
  • Are computing, coding, and computer science synonymous?
  • What should a child at a particular age be capable of programming and which concepts should they be able to put into use?
  • What sort of teacher preparation is required in order to realize the dream of computer science for all?

We have no idea what children would be capable of if they programmed computers for a sustained period of time. Although we taught tens of thousands of Australian fifth-seventh graders to program in LogoWriter or MicroWorlds between 1989 and 1995, (Johnstone, 2003) schools substituted computing for report writing, note taking, and office tasks by the time those children reached high school. In many cases, computers once an integral learning appendage, were barely used at all as soon as schooling got “serious” and focused on achievement or careers.

In the current coding for all craze, there is little attention given to the proposition that while programming, students may learn other things or explore powerful ideas concurrently. Programming appears to be a means to an end – becoming a programmer, even if that objective is barely defined or the process is trivial.

Coding advocates also send schizophrenic messages. Somehow, the same people can assert that programming is sufficiently difficult that anyone who manages to learn to code will find herself on economic Easy Street and yet, coding is so simple anyone can do it.

In 2014, code.org launched “Hour-of-Code” in a massive publicity blitz intended to attract the attention of schools. While this sounds like a work of satire, Hour-of-Code attracted President Obama, Bill Gates, Mark Zuckerberg and other cultural icons to record messages supporting the initiative. (Betters, 2014)

The idea of learning anything substantive in an hour seems preposterous. No amount of advertising or cheerleading is likely to result in more schools teaching computer science in a fashion that appeals to a wide variety of children or supports multiple learning styles. Hour-of-Code is an example of what Papert called verbal inflation and reminds us that “When ideas go to school, they lose their power.” (Papert, 2000b) By definition, Hour-of-Code must be trivial. Perhaps the goal of “Hour-of-Code” was never really to teach or even inspire kids to program, but to create the illusion that the very same Silicon Valley moguls seeking to dismantle public education aren’t so bad after all. (ASU+GSV Summit, 2014; Severns, 2013; G. Stager, 2011; Strauss, 2013, 2014) The cost of such an effort is trivial. “We’ve now reached 25 million kids, and the entire Hour of Code cost $1.2 million. That’s 5 cents a child,” said code.org co-founder Hadi Partovi. (Delevett, 2014)

If we stipulate that the motives of the coding advocates are pure, new questions arise when coding is proposed as the purview of schools. Although efforts like code.org would love to infiltrate schools, they are less concerned by where kids learn to code. When a role for coding in school is delineated through governmental policy or curricular statements, the concerns become more even more acute for constructionists.

 

Coding through school-colored glasses

Conservative UK Education Secretary Michael Gove announced in January 2012 that the national ICT curriculum should be scrapped at once because it is “a mess,” “harmful,” and “dull.” (Burns, 2012) Since Gove’s provocative BETT speech several American states, Singapore, and Estonia (Gardiner, 2014) have joined the chorus calling for all students to be taught computer science, even if they have no idea what that means or what is involved in achieving success. The exhaustive Royal Society study commissioned by the UK Government to guide the curricular shift towards every child learning computer science includes thoughts such as, “Computer Science education does not necessarily involve computers.” (Furber, 2012) Progress indeed.

The UK National Curriculum is short on actual examples of what a student might do or make with a computer, but long on vocabulary leaving implementation of the curriculum prone to memorization, not actual computer science. (Berry, 2013; Department of Education, 2013a, 2013b) Regardless of your feelings about the substance of the new UK curriculum, efforts around the world are being met with opposition by the theoretically most “tech savvy” teachers in the system, the existing ICT or computer literacy teachers who are resistant to change. The road ahead seems bleak when you factor in a shortage of qualified teachers, an overstuffed school day, inadequate computer resources and an abysmal participation rate among girls and minorities. (Ericson & Guzdial, 2014; Guzdial, 2006; Guzdial & Reed, 2014) And that doesn’t even include a discussion of why so few students are interested in learning computer science even where it is offered.

In the United States, there are proposals in several states to allow Computer Science to earn Foreign Language course credit. (Edutopia, 2013; Guzdial, 2014) Once again, policy-makers with little understanding of CS hear “language” and think they can check off two boxes at once, foreign language and computer science. Aside from the obvious flaws in this logic, the substitution is as much a symptom of unquestioned curricular heuristics than it is support for high quality computer science offerings. Swapping a subject you have trouble defending for CS is another example of the idea aversion (Papert, 2000b) Papert spoke of.

“Computer science for all” is a laudable objective and a welcome change in direction. The constructionist and maker communities possess a great deal of expertise and wisdom that should play a major role in shaping both policy and pedagogical practice. Without such involvement, this rhetorical effort may do more harm than good.

 

EPISTEMOLOGICAL POLITICS

At the very moment when incredible new technologies emerge with the potential to supercharge learning, increase ways of knowing, amplify human expression, forge strange alliances, and empower each teacher and student, the School system has never been more draconian. This too is part of Papert’s prophetic wisdom.

“I have used Perestroika in the Russian political sense as a metaphor to talk about change and resistance to change in education. I use it to situate educators in a continuum: are you open to megachange, or is your approach one of seeking Band-Aids to fix the minor ills of the education system? The dominant paradigm is the Band-Aid–most reform tries to jigger the curriculum, the management of schools, the psychological context of learning. Looking at the Soviet experience gives us a metaphor to talk about why this doesn’t work. For stable change a deeper restructuring is needed–or else the large parts of the system you didn’t change will just bring the little parts you did change back into line.” (Papert, 1991)

Global trends point towards greater public school privatization, addiction to standardized testing, teacher shaming, union busting, savage urban school closures, the rise of charter schools, national curricula, PISA score competition, the suspension of local democracy via mayoral control of school districts, and sacrificing the art of teaching for the mechanics of curriculum delivery and crowd control. (Crotty, 2014; Ravitch, 2013, 2014) Bill Gates tells us that class size does (Vise, 2011) not matter and that teachers may be replaced by YouTube videos. (Tan, 2013) Propagandistic films intended to stoke parental hysteria like, “Waiting for Superman,” play in theatres and on Oprah. (Ayers, 2010; Guggenheim et al., 2011; Karp, 2010; Miner, 2011)

 

The Rise of Instructionism

In his Perestroika analogy, Papert predicts that constructionism will be met with more instructionism, hopefully until constructionism prevails. One look at the state-of-the-art in educational computing points to a rise in instructionism.

Not only do schools still have computer labs three decades after their creation, but the computers in those labs are increasingly used for computer-assisted instruction, test-prep, standardized testing, and surveillance. Cory Booker, Mayor of Newark, New Jersey said, “Computer programming is quickly becoming an essential career skill. Learning to code is a fantastic opportunity equalizer – if you’re good at it, it can help you achieve your dreams.” He did this while presiding over a scorched-earth “school reform” regime that eliminated Logo programming, art and music in dozens of elementary schools.

When schools do invest in personal computers, they are likely to buy iPads incompatible with making; what Alan Kay calls “symmetric creation” (Greelish, 2013) or make even worse decisions. The Australian state of Victoria invested $180 million and eight years of distractions in a Gosplan-like fantasy called Ultranet. (Tomazin, 2014) The Los Angeles Unified School District just pledged to spend as much as $2 billion for iPads for the sole purpose of standardized testing in a procurement process only Putin could love. (Blume, 2014; Smith, 2014)

The sudden epidemic of bad teachers proclaimed by politicians and the public’s growing dissatisfaction with schooling may be signs of the traditional system crumbling. Can we rise above this period of darkness by lighting a path towards megachange?

“Just 100 years ago, John Dewey was saying things about educational change, not very different from what I believe in. He couldn’t get very far. And the reason why he couldn’t get very far is that he had only philosophical arguments. He didn’t have an army. You must have an army, and it’s an army primarily of children and the adults also are a political force in this.” (Papert, 1999)

Constructionism is a stance and therefore inseparable from politics. Papert might say that the current chaos plaguing education is “the last flick of a dying dragon’s tail.” (Papert, 2000a)

 

SYMBIOSIS OR MUTUALLY ASSURED DESTRUCTION?

In a toxic era of high-stakes testing, curriculum narrowing, teacher shaming and public school privatizing, the maker movement represents a ray of optimism in an otherwise bleak environment. Simultaneously, the maker movement is poised to go mainstream only if its leaders recognize the benefits of situating “making” in the context of progressive education. An understanding of constructionism and the embattled history of progressive education are necessary for the maker movement to mature.

Quite simply, progressive education requires the energy, passion, new materials, and technology of the maker movement to increase its visibility, relevance, value, and urgency with policy makers, parents, and educational practitioners. For making to mature into a mature movement supporting more than a boutique industry of occasional “faires,” camps, and parties, the members of its community need to understand more about constructionism as well the historic struggle associated with the implementation of progressive education. The maker movement needs to situate their terrific passion, tools, talents, and intuition in a larger context of learning in a politically charged educational system. Both communities have a great deal to learn from one another and should recognize that they stand on the shoulders of giants. Such open-mindedness and knowledge are the minimum conditions under which each community can endure. In order to transcend minority status, a symbiosis of each community’s powerful ideas is required for the aspirations of each to be embraced and sustained by the larger society.

One dilemma for the maker movement is that its major players want it to be both a cause and a profit-center. At FabLearn 2013, Leah Buechley courageously challenged Make™ to take issues of representation, inclusion, gender, race, cost, and accessibility seriously. (Buechley, 2013) Her most easily addressable criticism of Maker Media, owner of Make Magazine™ and Maker Faire™ was the lack of women and people of color on its magazine covers. That concern has been ignored to date. Buechley also pointed out the high cost of entry into “making.” Except for more expensive technology, such as 3D printers, prices do not seem to be falling quickly enough to bring “making” to underserved or poor populations, young or old.

Buechley rightly described how making and Make™ have been conflated in the mind of the population while Maker Media attempts to create an illusion of public service by placing their educational initiatives in a MakerEd non-profit. However, when the White House wishes to celebrate learning by making and its role in an innovative economy, they hosted a Maker Faire™ not a maker fair.

It should come as no surprise that there is a tension between commerce and changing the world. Maker Media is the 1,000 pound for-profit gorilla that creates a venue for makers to share their ingenuity in a commercial environment where others pay to interact with makers. There is nothing wrong with that. It has fueled the explosive rise in making. However, when one company controls the venue, narrative, access to market, and publishes products that compete directly with the creations of other makers, claims of a social mission need to be taken with a grain of salt. Monopolistic tendencies are incompatible with the democratic ideals of both making and progressive education.

Alas, the futures of the maker movement and progressive education are at a crossroads. While the maker movement currently benefits from media attention and the public’s fascination with cool new tech toys, progressive education has been a political punching bag for generations. It is blamed for educational failures disproportionate to its influence. Without great care, the maker movement may find itself susceptible to similar mocking, derision, or marginalization. Sure, that’s nice as a summer camp arts of crafts project, but what does it have to do with raising test scores. Political and social alliances need to be strengthened between each community or the fate of both will be uncertain at best.

 

FD 100

Papert reminds us that we need to shift our self-concept in order to bring about the change children deserve.

“Now there is an opportunity to become the person whose job is to facilitate rethinking the whole learning environment of the school, the whole structure of education. We are entering a period in which the person who was “the computer teacher” has the chance to become the educational philosopher and the intellectual leader of the school, of the education world.” (Papert, 1991)

It is inadequate to dismiss schools as relics of the past because that is where you will find millions of kids who need us. Fellow travelers in the maker movement and the unlikely allies behind the coding campaign might be just the army we need inside of a cardboard horse, with LED eyes, and synthesized speech all controlled by a tiny microcontroller running Scratch.

Let us spend our days at Stanford celebrating a growing acceptance of our ideas, but then return home to lead and engage in the hard work of improving the learning ecology.

 

References

Ackermann, E. (2001). Piaget’s Constructivism, Papert’s Constructionism: What’s the Difference? Paper presented at the 2001 Summer Institute, Mexico City.

ASU+GSV Summit. (2014). 2014 ASU+GSV Summit to feature Gov. Jeb Bush, Earvin “Magic” Johnson, Netflix CEO Reed Hastings and more than 225 game-changing education companies [Press release]. Retrieved from http://www.bizjournals.com/prnewswire/press_releases/2014/03/17/NY84960

Ayers, R. (2010). What ‘Superman’ got wrong, point by point. Washington Post, 27.

Berry, M. (2013). Computing in the National Curriculum – A guide for primary teachers. London: Computing At School.

Betters, E. (2014). Code.org’s Hour of Code campaign kicks off: Bill Gates, Mark Zuckerberg will teach you to write basic lines of code. Pocket-Lint.com. Retrieved April 15, 2014, 2014, from http://www.pocket-lint.com/news/125707-code-org-s-hour-of-code-campaign-kicks-off-bill-gates-mark-zuckerberg-will-teach-you-to-write-basic-lines-of-code

Blume, H. (2014). LAUSD’s Quest to See Full iPad Curriculum Comes Up Short. Los Angeles Times. Retrieved from http://www.latimes.com/local/la-me-0209-lausd-digital-20140211,0,304522.story – axzz30F68qhj9

Buechley, L. (2013, October 28, 2013). FabLearn@School 2013 Conference Closing Keynote. Paper presented at the Leah Buechley, Stanford University.

Burns, J. (2012). School ICT To Be Replaced by Computer Science Programme. BBC News. Retrieved April 25, 2014, 2014, from http://www.bbc.com/news/education-16493929

Crotty, J. M. (2014, March 31, 2014). Is Christie-Backed One Newark Reform Plan Good for City’s Studentsq. Forbes.

Delevett, P. (2014, March 7, 2014). Partovi Twins Quietly Emerge as Top Silicon Valley Angel Investors. San Jose Mercury News. Retrieved from http://www.mercurynews.com/business/ci_25297022/ali-hadi-partovi-twins-silicon-valley-angel-investors

Department of Education. (2013a). Computing Programmes of Study: Key Stages 1 and 2 UK National Curriculum. London.

Department of Education. (2013b). Computing Programmes of Study: Key Stages 3 and 4 UK National Curriculum. London.

Edutopia. (2013). Should Coding be the “New Foreign Language” Requirement? Edutopia. Retrieved from Edutopia website: http://www.edutopia.org/blog/coding-new-foreign-language-requirement-helen-mowers

Ericson, B., & Guzdial, M. (2014). Measuring demographics and performance in computer science education at a nationwide scale using AP CS data. Paper presented at the Proceedings of the 45th ACM technical symposium on Computer science education, Atlanta, Georgia, USA.

Furber, S. (2012). Shut down or restart? The way forward for computing in UK schools. The Royal Society, London.

Gardiner, B. (2014, March 23, 2014). Adding Coding to the Curriculum. New York Times. Retrieved from http://www.nytimes.com/2014/03/24/world/europe/adding-coding-to-the-curriculum.html?_r=0

Generation_WHY (Producer). (1998, March 16, 2011). Seymour Papert on Generation WHY and Kid Power. Retrieved from http://blog.genyes.org/index.php/2010/02/20/seymour-papert-on-generation-yes-kid-power/

Gershenfeld, N. (2005). Fab: the coming revolution on your desktop–from personal computers to personal fabrication. Arizona: Basic Books.

Greelish, D. (2013, April 2, 2013). An Interview with Computing Pioneer Alan Kay. Time.

Guggenheim, D., Kimball, B., Chilcott, L., Strickland, B., Rhee, M., Weingarten, R., . . . Cassidy, J. (2011). Waiting for” Superman”: Paramount Home Entertainment.

Guzdial, M. (2006). Computing for Everyone: Improving Global Competitiveness and Understanding of the World. Retrieved September, 10, 2007.

Guzdial, M. (2014). Why Counting CS as a Foreign Language Credit is a Bad Idea from CSTA Blog. Retrieved from http://computinged.wordpress.com/2014/03/19/why-counting-cs-as-a-foreign-language-credit-is-a-bad-idea-from-csta-blog/

Guzdial, M., & Reed, D. (2014). Eyes forward. Commun. ACM, 57(4), 10-11. doi: 10.1145/2581795

Jalopy, M., Torrone, P., & Hill, S. (2005). The Maker\’s Bill of Rights. from http://archive.makezine.com/04/ownyourown/

Johnstone, B. (2003). Never Mind the Laptops: Kids, Computers, and the Transformation of Learning. Seattle: iUniverse.

Karp, S. (2010). Superhero school reform heading your way: Now playing in Newark, NJ. Rethinking Schools, 25(3), 12-17.

Kay, A. (1996). Revealing the Elephant: The Use and Misuse of Computers in Education. Educom Review, 31(4), 22.

Martinez, S.-L., & Stager, G. (2013). Invent to learn: making, tinkering, and engineering in the classroom: Constructing Modern Knowledge Press.

Merlo, S. (2014, January 1st, 2014). The Year of 100 Maker Faires.   Retrieved April 1, 2014, 2014, from http://makezine.com/2014/01/01/the-year-of-100-maker-faires/

Miner, B. (2011). The Ultimate $uperpower: Supersized Dollars Drive” Waiting for” Superman”” Agenda. Rethinking Schools, 25(2), 18-22.

Papert, S. (1980). Mindstorms: children, computers, and powerful ideas. New York: Basic Books.

Papert, S. (1984). Computer as Mudpie. In D. Peterson (Ed.), Intelligent Schoolhouse: Readings on Computers and Learning. Reston, VA: Reston Publishing Company.

Papert, s. (1991). Perestroika and Epistemological Politics. In I. Harel & S. Papert (Eds.), Constructionism (pp. 13-28). Norwood, NJ: Ablex Publishing Corporation.

Papert, S. (1998, June 2). Child Power: Keys to the New Learning of the Digital Century [lecture transcript]. Paper presented at the Eleventh Colin Cherry Memorial Lecture on Communication, Imperial College, London, UK.

Papert, S. (1999). Ghost in the Machine: Seymour Papert on How Computers Fundamentally Change the Way Kids Learn. Interview of Seymour Papert by Dan Schwartz.

Papert, S. (2000a). Seymour Papert’s CUE Conference Keynote Address (transcription). Palm Springs, CA: DailyPapert.com.

Papert, S. (2000b). What’s the Big Idea? Toward a Pedagogical Theory of Idea Power. IBM Systems Journal, 39(3&4), 720-729.

Papert, S., & Franz, G. (1987). Computer as Material: Messing About with Time. Teachers College Record, 89(3).

Papert, S., & Solomon, C. (1971). Twenty things to do with a computer Artificial Intelligence Memo # 248. Cambridge, MA: Massachusetts Institute of Technology.

Quinn, H., Schweingruber, H., & Keller, T. (2012). A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas: National Academies Press.

Ravitch, D. (2013). Reign of Error: The Hoax of the Privatization Movement and the Danger to America’s Public Schools: Random House LLC.

Ravitch, D. (2014, March 27, 2014). New York Schools: The Roar of the Charters. New York Review of Books.

Severns, M. (2013, Mar. 28, 2013 2:23 ). Whatever Happened to the $100 Million Mark Zuckerberg Gave to Newark Schools. Mother Jones.

Smith, D. (2014, January 14, 2014). LAUSD Moves Forward with Second Phase of iPad Rollout. Los Angeles Daily News. Retrieved from http://www.dailynews.com/social-affairs/20140114/lausd-moves-forward-with-second-phase-of-ipad-rollout

Stager, G. (2011). Who Elected Bill Gates? The Huffington Post. Retrieved April 1, 2014, 2014, from http://www.huffingtonpost.com/gary-stager/who-elected-bill-gates_b_829456.html

Stager, G. (2014, Winter 2014). What’s the Maker Movement and Why Should I Care? Scholastic Administrator, 43-45.

Stager, G. S. (2006). An Investigation of Constructionism in the Maine Youth Center. (Ph.D.), The University of Melbourne, Melbourne.

Strauss, V. (2013, January 6, 2013). The Secret E-mails About Mark Zuckerberg’s $100 Million Donation to Newark schools. Retrieved from http://www.washingtonpost.com/blogs/answer-sheet/wp/2013/01/06/the-secret-e-mails-about-mark-zuckerbergs-100-million-to-newark-schools/

Strauss, V. (2014, January 6, 2013). Netflix’s Reed Hastings Has a Big Idea: Kill Elected School Boards. Retrieved from http://www.washingtonpost.com/blogs/answer-sheet/wp/2013/01/06/the-secret-e-mails-about-mark-zuckerbergs-100-million-to-newark-schools/

Tan, S. (2013, May 18, 2013). Khan Academy Founder Returns Home as Big Name in U.S. Scholl Reform. New Orleans Times Picayune. Retrieved from http://www.nola.com/education/index.ssf/2013/05/khan_academy_founder_returns_h.html

Tomazin, F. (2014, April 20, 2014). Plug Pulled on Schools’ Disastrous Ultranet Computer System. The Age. Retrieved from http://www.theage.com.au/victoria/plug-pulled-on-schools-disastrous-ultranet-computer-system-20140419-36xse.html

Vise, D. d. (2011, february 28, 2011). Bill Gates Talks About Teacher Pay, Class Size. The Washington Post. Retrieved from http://voices.washingtonpost.com/college-inc/2011/02/bill_gates_talks_about_teacher.html

 

I just received the following email from my nephew, a conscientious and excellent student currently enrolled at an East Coast university costing $68,000/year – before textbooks, etc…

The subject line in the email was PISSED

Since I know how much you love Pearson…

I’m taking a math course and an accounting course this term, each requires the completion of weekly online homework assignments. In order to gain access to these assignments, each student must make an account using a course ID so that our scores will automatically be sent to the professors, and purchase access to the e-books online. The accounting textbook is McGraw-Hill, and the math book is Pearson.

Each e-book will cost me $100, only because we are required to use these websites for our homework. I’m literally buying homework.

I thought Pearson’s death-grip on my throat was over, but alas…

Click to enlarge image

It is worth noting that all of my nephew’s other coursework thus far has been project-based and authentic.

OF COURSE, a required math course and math-adjacent “Accounting,” rely on the same-old shitty “answer the odd numbered questions” alternative to an actual productive education experience. This is not a small point.

As Seymour Papert told me, [paraphrase] “If you are not concerned that not a single progressive development in education has had an impact on ‘math,” it means ultimately that no matter what else your school does to make education relevant, there is some part of the day or week where you introduce coercion, irrelevance, and misery into the system.” This coercion is corrosive and ultimately undermines any other learner-centered efforts. As I like to say, “the weeds will always kill the flowers.”

Hate to be a killjoy, but I just looked at one of the Code.org activities for programming turtle graphics in App Lab.

As someone who has taught various dialects of Logo to kids and teachers for 34+ years, I was horrified by the missed learning opportunities and design of the activity. My concerns are in lesson/interface design and lost learning opportunities.

https://studio.code.org/s/cspunit3/stage/2/puzzle/1

First of all, you connect any blocks and then hit Next. It doesn’t matter if you solve the actual problem posed or not.

Second and MUCH more importantly, ALL of the power and intellectual nutritional value of turtle geometry is sacrificed in order to teach a much simpler lesson in snapping blocks together in service of “efficiency.”

The power of turtle geometry is well – geometry, also measurement, and number. There are no numerical inputs to the turtle geometry blocks and all of the turns are in 90 degree increments.

The use of Javascript (presumably the blocks were added to the environment for this exercise and are not actual primitives) adds needless and confusing punctuation to the command structure WITHOUT the benefit of allowing users to change the input to FD or LT. Therefore, any opportunity to explore powerful mathematical ideas

As we approach the 50th anniversary of Logo and are celebrating the 35th anniversary of the publication of Mindstorms – Children, Computers, and Powerful Ideas, it sure would be nice if Code.org would learn some fundamental lessons of children, computers, and powerful ideas instead of depriving kids of an opportunity to learn mathematics while learning computer science.

Discussion:

Since posting the above statement to a CS discussion forum on Facebook, Hadi Partook – founder of Code.org responded as follows.

Gary, the goal of this course isn’t to teach turtle programming. Most of the students in our course sequence would have done that years earlier. This is a high school course to introduce students to JavaScript (including the syntax) and making apps. It begins with a few turtle stages because turtle programming would be familiar to these students as a concept fully explored in our CS Fundamentals courses – including all the geometric glory you mention, and problems that tell you whether you solved them or not. In our high school course the theme isn’t “solving puzzles” because it’s about “making apps,” with just a few turtle examples to carry forward from something students already know.

Hadi, I wish I shared your optimism that kids in your high school courses had experience with turtle geometry. I found the design of this unit clickable with very little nutritional value, especially since its web-based design implies little teacher interaction or scaffolding. If the turtle “blocks” used in the example are merely an exercise in sequencing, then they need no punctuation on them whatsoever. If I desired to change the angle or linear units, there was no way to do so (at least no way obvious to me).
Therefore, from a design perspective, there are several problems with the lesson. They include:
  • Low engagement
  • Limits on student creativity, exploration, and tinkering
  • A missed opportunity for students to learn/use mathematical ideas while learning Javascript
I am NOT asking that the lessons yell at kids for being wrong or test them along the way. That would make things worse.

The Atlantic featured a really good piece of reflection on the lost art of teaching by the great magician Teller, half of Penn and Teller.

 

“The first job of a teacher is to make the student fall in love with the subject. That doesn’t have to be done by waving your arms and prancing around the classroom; there’s all sorts of ways to go at it, but no matter what, you are a symbol of the subject in the students’ minds.”
– Teller

 

This fits nicely with my oft-repeated statement, “Schools have an obligation to introduce children to things they don’t yet know they love.”

Americans have a nutty notion that experts are bad teachers. My experience is quite to the contrary. You become an expert by obsessively focusing on often tiny, yet continuous growth. That precision and focus is easy converted into an ability to explain a learning process.

 

 Read Teaching: Just Like Performing Magic
With Teller and the Criss Angel of Chicago, David Jakes

With Teller and the Criss Angel of Chicago, David Jakes

More than 20 years ago, a graduate student of mine, named Beth, (surname escapes me, but she had triplets and is a very fine high school math teacher) used an early version of MicroWorlds to program her own version of a toolkit similar to Geometer’s Sketchpad. Over time, I ran a similar activity with kids as young as 7th grade. I’ve done my best to piece together various artifacts from my archives into a coherent starting point for this potentially expansive activity. Hopefully, you’ll be able to figure out how to use the tools provided and improve or expand upon them.

Students (middle and high school) will use MicroWorlds EX create their own tool for exploring two-dimensional geometry similar to Geometers’ Sketchpad, Cabri, or GeoGebra. [1]

As students build functionality (via programming) into a tool for creating and measuring geometric constructions, they reinforce their understanding of important geometric concepts. As the tool gets more sophisticated, students learn more geometry, which in turn leads to a desire to explore more complex geometric issues. This is an ecological approach to programming. The tool gets better as you learn more and you learn more as the tool becomes more sophisticated.

Along the way, students become better programmers while using variables, list processing, and recursion in their Logo procedures. They will also engage in user interface design.

Resources:


[1] I would not show commercial models of the software to students until after they have programmed some new functionality into their own tools.

Using Computers as Creative Tools
The debate about technology’s place in classrooms might vanish if the machines are used to expand students’ self-expression
Be sure to read to bottom!


A version of this column appeared in the March 2001 issue of Curriculum Administrator Magazine.

I recently attended attended Apple Computer CEO Steve Job’s keynote address at the annual Macworld Conference in San Francisco. Amidst the demonstrations of OS X, the launch of the sexy new Titanium Powerbook and the obligatory race between a Pentium IV and Macintosh G4 (you can guess which won), Jobs said some things that I believe will be critically important to the future of computing.

Quotations from the CEOs of Gateway and Compaq decrying the death of the personal computer were rebuffed by Jobs who not only asserted that the PC is not dead, but that we are entering a new age of enlightenment. Steve Jobs declared that the personal computer is now “the digital hub for the digital lifestyle.”

While everyone is excited about new handheld organizers, video cameras, cell phones and MP3 players, these devices not only require a personal computer for installing software, backing up files and downloading media – they are made more powerful by the PC. The personal computer is the only electronic device (at least for the foreseeable future) capable of multimedia playback, supercomputer-speed calculations and massive data storage. Most importantly, the personal computer is required for those who wish to create, rather than be passive recipients of bits generated by others.

Jobs discussed how video cameras are cool, but iMovie makes them much more powerful. Boxes full of videotapes are no longer lost in the attic, because you can easily produce edited movies shareable with friends, relatives and the world. Jobs then launched iDVD, Apple’s stunning new technical breakthrough that allows anyone to create their own DVDs in minutes. Think about what this could mean in a classroom! Class plays, science experiments and sporting events could be shared with the community and playable with state-of-the-art quality on the home television. Video case studies of best practice can be used in teacher education complete with digital quality audio/video. Zillions of digital photos and scanned images of student work can be assembled as portfolios stored on one disk and viewed anywhere.

A company representative from Alias Wavefront was brought to the stage to demonstrate their software package, Maya. Maya is the 3D graphics tool used by George Lucas to make the most recent Star Wars film and by all of last year’s Oscar nominees for best special effects to work their artistic magic. The quick demo showed how a flower paintbrush could be chosen and with the wave of the mouse flowers could be drawn in 3D on the computer screen. These were no ordinary flowers though. The software knew to make each flower slightly different from the others, as they would appear in nature. The software also knew how they would behave if wind were to be added to the scene. Clouds drawn knew to move behind the mountains. Until now, Maya required a specially configured graphics workstation. It now runs on a Macintosh G4. While the software is currently too expensive for most kindergarten classrooms, it occurred to me that the world will be a much cooler place when five year-olds can use Kid-Pix-level fluency to create with the same tools as George Lucas. Perhaps then they will stop blowing up their Kid-Pix creations and express themselves through film.

Jobs argued that iMovie makes video cameras more powerful and iDVD enhances the value of both the video camera and DVD player. Therefore, the personal computer not only powers digital devices, but empowers our lives. This is a profoundly liberating and enabling vision for society.

As I left the auditorium I thought, “Steve Jobs really gets it!” However my admiration for his vision and desire for the new “toys” was quickly tempered by thoughts regarding the imagination gap guiding the use of computers in schools. Not once did Jobs compare the PC to the pencil or refer to it as a tool for getting work done. No standards for computer-use were offered. Instead, he challenged us to view the computer as a way of inspiring a renaissance of human potential.

Just Make Something
The personal computer is the most powerful, expressive and flexible instrument ever invented. It has transformed nearly every aspect of society, yet schools remain relatively untouched. Rather than be led by technological advances to rethink models of schooling, schools and the software industry have chosen to use computers to drill for multiple-choice tests, play games and find answers to questions available in reference books via the Internet. While the Internet is an incredibly powerful and handy reference tool, it’s real potential lies in its ability to democratize publishing and offer unprecedented opportunities for collaboration and communication. The dominant practice is to restrict or forbid this openness through filtering software, acceptable-use policies and overzealous network administrators. When the paradigm for Internet use is “looking stuff up” it should come as no surprise that kids are going to look at inappropriate content.

The results of this imagination paralysis are too numerous to mention. The hysteria over Internet use, growing disenchantment with schooling and calls to reduce tech funding are clearly the consequences of our inability to create more explicit, creative and public models of computers being used by children to learn in magnificent ways. The recent dubious report, Fool’s Gold, by the Alliance for Childhood, takes aim at school computer-use by illustrating the trivial and thoughtless ways computers are used in schools. A moment of candor requires us to admit that most of their criticisms are valid. Schools do use computers in dopey ways. However, that is not a legitimate argument for depriving kids of the opportunity to learn and express themselves with computers. It is however an indictment of the narrow ways in which schools use technolology. Experts advocating the use of handheld devices as “the perfect K-12 computer” so that students may take notes or have homework assignments beamed to them are cheating our young people out of rich learning adventures.

It’as if schools have forgotten what computers do best. Computers are best at making things – all sorts of things. Educational philosophers including Dewey, Piaget, Papert, Vygotsky, Gardner have been telling us forever that the best way to learn is through the act of making things, concrete and abstract. The PC is an unparalleled intellectual laboratory and vehicle for self-expression yet schools seem ill-equipped or disinclined to seize that potential.

Kids can now express their ideas through film-making, web broadcasting, MIDI-based music composition and synchronous communication. They can construct powerful ideas (even those desired by the curriculum) through robotics, simulation design and computer programming.

While there is much rhetoric about kids making things with computers, those projects tend to reinforce old notions of teaching. Hyperstudio book reports or databases containing the pets owned by classmates are not what I have in mind. Kids should make authentic things borne of their curiosity, interests and reflecting the world in which they live.

I cannot imagine that the critics of public education and the investment in educational technology would object to kids using computers in such authentic, deeply intellectual and creative ways. Rather than creating unproductive standards for computer use, educational computing organizations should be building, documenting and sharing compelling models of how computers may be used to inspire joyful learning throughout the land.

Seymour Papert has proposed that we “view the computer as material.” This material may be used in countless wonderful and often unpredictable ways. Teachers are naturally gifted with materials of all sorts and the computer should be part of that mix. This change in focus should reap rewards for years to come.

We can do good and do well by exercising a bit more creativity. We can neutralize our critics and move education forward if we shift our focus towards using school computers for the purpose of constructing knowledge through the explicit act of making things. Children engaged in thoughtful projects might impress citizens desperate for academic rigor. Emphasizing the use of computers to make things will make life easier for teachers, more exciting for learners and lead schools into this golden age. [Emphasis 2016]

Scanned PDF of the original article 

Last year, my friends at Intel invited me to participate in a breakfast summit at the Museum of Contemporary Art overlooking the Sydney Opera House. The other invited guests seated around the table represented captains of industry, distinguished academics, and leaders of assorted acronyms. We each had 2-3 minutes to solve the problems with school, 21st Century skills, S.T.E.M, S.T.E.A.M. girls and technology, economic development, Coding in the classroom, teacher education, and a host of other challenges that normally require 5-6 minutes of breathless rhetoric or clever slogans.

I had the luxury of speaking last. I began by saying, “The first thing we need to do is find a cure for amnesia.” Those armed with “solutions” or prescriptions for “reforming” education do not lack for chutzpah. A sense of perspective and awareness of history are their greatest deficits.

I once heard President Clinton tell the National School Boards Association, “Every problem in education has been solved somewhere before.” We do indeed stand on the shoulders of giants, but Silicon Valley smart-alecks and the politicians they employ behave as if “history begins with me.”

During the Intel breakfast I pointed out a few historic facts:

  1. 1:1 computing began at a girls school in Australia a quarter century ago for the express purpose of reinventing education by programming across the curriculum and that work led to perhaps a few hundred thousand Australian children and their teachers learning to program (“coding”). For those scoring at home. That one statement ticks the boxes for 1) personal computing in education; 2) programming across the curriculum; 3) girls and technology; 4) success in building teacher capacity; 5) evidence of successful (at least temporary) school reinvention; 5) appealing to hometown pride.
  2. None of the expressed goals were possible without abandoning the heavy-handed medieval practices of national curricula, terminal exams, ranking, sorting, and inequity that are cornerstones of Australian education. Progressive education is a basic condition for achieving any of the desires shared by my esteemed colleagues.
  3. There are many examples of people who have not only shared similar concerns throughout history, but who have overcome the seemingly insurmountable hurdles. We have even demonstrated the competence and curiosity of teachers. For example, my friend Dan Watt sold more than 100,000 copies of a book titled, “Learning with Logo,” circa 1986. Let’s say that 10% of the teachers who bought such a book taught kids to program, that’s still a much bigger impact than “Hour of Code.” (Of course there were dozens of other books about how to teach children to program thirty years ago.)
  4. Perhaps the reason why so few students are taking “advanced” high school math courses is because the courses are awful, irrelevant, and toxic.
  5. If it is truly a matter of national security that more children enroll in “advanced” science and math courses, it seems curious that such courses are optional. Perhaps that is because we are quite comfortable with a system that creates winners and losers.
  6. I have been teaching computer science to children for thirty-four years professionally and forty years if you count my years as a kid teaching my peers to program.

The other day, President Obama announced $4 billion dollars available to teach computer science/coding and mathematics (now that’s a novel idea) for the vulgar purpose of creating “job-ready” students. Never mind the fact that there remains no consensus on what computer science is or how such lofty goals will be achieved, especially by a lame duck President. If history is any guide and if the promised funds are ever appropriated, this seemingly large investment will disappear into the pockets of charlatans, hucksters, and a proliferation of “non-profits” each suckling on the government teat. (See eRate)

To make matters worse, one of our nation’s leading experts on computer science education reports that the national effort to design a K-12 Computer Science Framework has is focused on consensus.

“The goal is to create a framework that most people can agree on.  “Coherence” (i.e., “community buy-in”) was the top quality of a framework in Michael Lach’s advice to the CS Ed community (that I described here). As Cameron Wilson put it in his Facebook post about the effort, “the K-12 CS Framework is an effort to unite the community in describing what computer science every K-12 student should learn.”  It’s about uniting the community.  That’s the whole reason this process is happening.  The states want to know that they’re teaching things that are worthwhile.  Teacher certificates will get defined only what the definers know what the teachers have to teach. The curriculum developers want to know what they should be developing for.  A common framework means that you get economies of scale (e.g., a curriculum that matches the framework can be used in lots of places).

The result is that the framework is not about vision, not about what learners will need to know in the future.  Instead, it’s about the subset of CS that most people can agree to.  It’s not the best practice (because not everyone is going to agree on “best”), or the latest from research (because not everybody’s going to agree with research results).  It’s going to be a safe list.

…That’s the nature of frameworks.  It’s about consensus, not about vision. [emphasis mine]  That’s not a bad thing, but we should know it for what it is. We can use frameworks to build momentum, infrastructure, and community. We can’t let frameworks limit our vision of what computing education should be.  As soon as we’re done with one set of frameworks and standards, we should start on the next ones, in order to move the community to a new set of norms. Guzdial, M. (2016) Developing a Framework to Define K-12 CS Ed: It’s about consensus not vision.

That’s right, mountains of money and human capital will be expended to determine the status quo. Consultant will be enriched while school children are treated to “coding” curricula so good that you don’t even need a computer! Powerful ideas are viewed as distractions and vision may be addressed at indeterminate date in the future.

“The future must be dreamed, desired, loved, created. It must be plucked from the soul of the present generations with all the gold gathered in the past, with all the vehement yearning to create the great works of individuals and nations.” – Omar Dengo

From Melbourne to Massachusetts to the UK, large scale state and national edicts to teach “coding” or “computer science” K-12 has resulted in laundry lists of unrelated nonsense, full of “off-computer” programming activities, keyboarding instruction, file saving, posture lessons, digital citizenship, identification of algorithms, counting in binary, bit, byte, and vocabulary acquisition. In more than one jurisdiction, the computer science curricula is touted as “not even needing a computer!”

There is far too little discussion of programming a liberal art – a way of having agency over an increasingly complex and technologically sophisticated world. There is no discussion of Seymour Papert’s forty-eight year-old question, “Does the computer program the child or the child program the computer?”

There is no talk about changing schooling to accommodate powerful ideas or even add programming to the mathematics curriculum as my Wayne, NJ public schools did forty years ago. Instead, we’re renaming things and chanting slogans.

Frequent readers of my work might be surprised that I only include one mention of Seymour Papert in this article. Instead, I end with the words of another old friend of mine, Arthur Luehrmann. Arthur coined the term computer literacy. After three decades of his term being segregated to justify the most pedestrian of computer use (Google Apps, IWBs, online testing, looking up answers to questions you don’t care about, etc…), it is worth remembering what he meant when he invented the term, computer literacy. The following is from a 1984 book chapter, Computer Literacy: The What, Why, and How.

“A few years ago there was a lot of confusion about what computer literacy meant. Some people were arguing that a person could become computer literate merely by reading books or watching movies or hear- ing lectures about computers. That viewpoint probably came out of a time when computer equipment was expensive and, therefore, not often found in classrooms. Teachers had to teach something, so they taught “facts” about computers: their history, social impact, effect on jobs, and so forth. But such topics are more properly called “computer awareness,” I believe.

Even the fact that a school or district possesses one or more com- puters must not be taken as evidence that education in computer literacy is taking place. Many schools use computers for attendance and grade reporting, for example. These administrative uses may improve the cost- effectiveness of school operations, but they teach children nothing at all about computers.

Other schools may be using computers solely to run programs that drill their students on math facts, spelling, or grammar. In this kind of use, often called Computer-Assisted Instruction, or CAI, the computer prints questions on the display screen, and the student responds by typing answers on the keyboard. Except for rudimentary typing skills and when to press the RETURN key, the student doesn’t learn how to do anything with the computer, though. Here again, a mere count of computers doesn’t tell anything about what students may be learning.

A third kind of use comes closer to providing computer literacy, but it too falls short. In this mode, the computer, together with one or more programs, is used to provide some kind of illumination of material in a regular, noncomputer course. A social studies teacher, for example, might use The Oregon Trail simulation program to illustrate the difficul- ties pioneers encountered in trekking across the American West. Such an application not only teaches American history, it also shows students that computers can be made to simulate things and events—a powerful notion. Yet neither in this, nor in any of the other educational uses of the computer I have mentioned so far, does a student actually learn to take control of the computer.

Literacy in English or any language means the ability to read and write: that is, to do something with the language. It is not enough to know that any language is composed of words, or to know about the pervasive role of language in society. Language awareness is not enough. Similarly, “literacy” in mathematics suggests the ability to add numbers, to solve equations, and so on: that is, to do something with mathematics. It is not enough to know that numbers are written as sets of digits, or to know that there are vocational and career advantages for people who can do things with mathematics.

Computer literacy must mean the ability to do something constructive with a computer, and not merely a general awareness offacts one is told about computers. A computer literate person can read and write a computer program, can select and operate software written by others, and knows from personal experience the possibilities and limitations of the computer.”

At least educational policy is consistent, we continuously invent that which already exists, each time with diminished expectations.

Thirty two years after Luhrmann published the words above – longer than the lifespan of many current teachers and our national goal is to create job-ready coders? Off! We should be ashamed.

Luhrmann, A. (1984). Computer Literacy: The What, Why, and How. In D. Peterson (Ed.), Intelligent Schoolhouse: Readings on Computers and Learning. Reston, VA: Reston Publishing Company.

This is undoubtedly a first-draft written during a conference overseas.with kid Gary stager_hkis X 200

“Equity demands access to a greater range of intellectual & creative experiences, not merely access to same crap rich White boys don’t need either.” – Gary S. Stager, Ph.D.