A Not-So-Funny Thing Happened on the Way to the Future

© 2004 Gary S. Stager

Published by the NECC Daily Leader conference newspaper on June 22, 2004

The computer is not just an advanced calculator or camera or paintbrush; rather, it is a device that accelerates and extends our processes of thought. It is an imagination machine, which starts with the ideas we put into it and takes them farther than we ever could have taken them on our own.”  (Daniel Hillis, 1998)

This is an incredibly dark period for education. Perennial challenges are now accompanied by name-calling and public policy based on “getting tough” with third graders. Perhaps decision-makers just don’t know what learning in the digital age could look like. They need to see how kids not only learn old things in new ways, but construct personal understanding of powerful ideas in a rigorous computationally-rich fashion. Computers are today’s dominant intellectual laboratories and vehicles for self-expression.

Computers offer kids the means of production for learning via previously off-limit domains, including: music composition, filmmaking, robotics, computer science, journalism and engineering.

If only there were a place where compelling models of new educational practice could be shared… Welcome to NECC!

A few years ago, educators ceased talking about computing and started talking about technology. Suddenly computing, this remarkable invention of 20th century ingenuity, capable of transforming every intellectual domain, was dead without so much as an obituary. Conference speakers soon spoke of computers being just technology – like a zipper or Pez dispenser. This rhetorical shift liberated educators from learning to use computers, rethink the nature of curriculum or change practice to embrace the expansive opportunities afforded by computing. Information became the focus, not what kids do with computers.

In the mid-1970s my junior high required every 7th grader to learn to program a computer in nine weeks. The feelings of intellectual elation I experienced programming are indescribable. I didn’t know what was impossible so everything was possible. The computer amplified my thinking and the habits of mind I developed in Mr. Jones’ class serve me every day.

Bill Gates and Steve Wozniak enjoyed similar experiences. Imagine how the world would be different if some smart adults had not procured a mainframe and some terminals and said to Gates and Wozniak, “See what you can figure out. Have fun. Lock up when you’re done.”

How do your children’s school computing experiences compare? Do all students have access to creative tools anytime anyplace? Does the school culture inspire a thirst for knowledge and support authentic project-based work?

We’ve lowered standards when twelve year-olds in my junior high are NOW being taught to find the return key in a mandatory keyboarding class. Someday they may be “taught” to surf a filtered locked-down crippled Web incapable of downloading, rich media or collaboration all in the name of preparing them for the future. Some future.

Adults talk of how kids know so much about computers, how they are so competent, confident and fluent. Then those kids come to school and are treated like imbeciles or felons. Kid power is a gift to educators. We need to build upon those gifts and channel their students in directions they might not know exist. If kids came to school readers, we wouldn’t grunt phonemes at them. We would read better literature.

When many of us first attended NECC, we viewed the personal computer as not only a window on the future, but a microscope on the past. We knew how all sorts of learners exceed our wildest expectations when equipped with computers and constructionist software. Personal experience illuminated how the existing pencil-based curriculum was failing kids. Optimism filled the air.

Look around and you might conclude that the state-of-the-art includes: classrooms as game shows; data mining to justify standardized testing; reading as a winner-take-all race; and hysterical network security. “Technology” is being touted as a way to centralize control and breathe life into the least effective teaching practices of yore.

Widespread consensus is hard to achieve, especially on complex matters like education. Nonetheless, the educational computing community seems to have decided that our children should look forward to a future filled with testing and Microsoft Office instruction. Tests about Microsoft Office could achieve two national goals.

NECC attendees are pioneers entrusted with helping schools realize the potential of the imagination machine and as Gladwell suggests serve as the 10th Fleet in revolutionizing the context for learning. Go home and share the fabulous ideas you collect here in the Big Easy, but remember that the kids you serve expect big things from you and it won’t be easy.

In Australia…

Laptop Schools Lead the Way in Professional Development

As published in Educational Leadership – October 1995
By Gary S.Stager

Gary S. Stager is a teacher educator and adjunct professor at Pepperdine University. He has spent the past ten years working with a dozen Australian schools in which every student and teacher has a laptop computer.

Educational reform is too often equated with plugging students into anything that happens to plug in. Technology-rich Australian schools lead the way in helping teachers use technology thoughtfully.

Many educators believe that technology alone will lead to innovation and restructuring in schools. Unfortunately, they either do not include staff development in the equation, or they provide programs that do little more than ensure that teachers are able to unjam the printer or use one piece of canned instructional software.

Having developed a number of professional development models for a dozen schools in Australia and more in the United States, I believe computer-related staff development should immerse teachers in meaningful, educationally relevant projects. These activities should encourage teachers to reflect on powerful ideas and share their educational visions in order to create a culture of learning for their students. In brief, teachers must be able to connect their computer experience to constructive student use of computers.

Australian Leadership

In 1989, Methodist Ladies’ College, an independent pre-K-12 school with 2,400 students, embarked on an unparalleled learning adventure. At that time, the Melbourne school made a commitment to personal computing, LogoWriter, and constructivism. The governing principle was that all students, grades 5-12, should own a personal notebook computer on which they could work at school, at home, and across the curriculum. Ownership of the notebook computer would reinforce ownership of the knowledge constructed with it. Approximately 2,000 Methodist Ladies’ College students now have a personal notebook computer.

The school made personal computing part of its commitment to creating a nurturing learning culture. It ensured that teachers were supported in their own learning by catering to a wide range of learning styles, experiences, and interests. All involved agreed that personal computing was a powerful idea, one more important than the computers themselves. What students actually did with the computers was of paramount importance. LogoWriter was the schools’s primary software of choice. (MicroWorlds is now used.)

Dozens of Australian schools (called “laptop schools”) are now in various stages of following the lead of Methodist Ladies’ College in computing and are now using some of the professional development models created during my five years of work there.

Staff Development Innovations

Many schools find the task of getting a handful of teachers to use computers at even a superficial level daunting. The laptop schools expect their teachers not only to be comfortable with 30 notebook computers in their classroom, but also to participate actively in the reinvention of their school. In such progressive schools, staff development does not mean pouring information into teachers’ heads or training them in a few technical skills. Staff development means helping teachers fearlessly dream, explore, and invent new educational experiences for their students.

I have employed three staff development strategies – in-classroom collaboration, “slumber parties,” and build-a-book workshopsæin many laptop schools. All three model constructivism by providing meaningful contexts for learning, emphasizing collaborative problem solving and personal expression, and placing the learner (in this case the teacher) at the center of the learning experience. Each school values and respects the professionalism of the teachers by acknowledging the knowledge, skills, and experience each teacher possesses.

In-Classroom Collaboration

Several Australian laptop schools have used the in-classroom model I developed working in the Scarsdale, New York, and Wayne, New Jersey, public schools. This collaborative form of teacher development places the trainer in the teacher’s classroom to observe, evaluate, answer questions, and model imaginative ways in which the technology might be used. The collaborative spirit and enthusiasm engendered by the trainer motivates the teacher, who feels more comfortable taking risks when a colleague is there to help. Implementation is more viable because this professional development occurs on the teacher’s turf and during school hours.

Residential “Slumber Parties”

This approach allows teachers to leave the pressures of school and home behind for a few days to improve their computing skills in a carefully constructed environment designed to foster opportunities for peer collaboration, self-expression, and personal reflection, and to encourage a renewed enthusiasm for learning. These workshops have taken place at hotels, training centers, a monastery with lodging facilities, even at a school. These learner-centered workshops stress action, not rhetoric. The workshop leader serves as a catalyst, and creates opportunities for participants to connect personal reflections to their teaching. These connections are powerful when they come from the teacher’s own experienceæmuch like the types of learning opportunities we desire for students. The slumber parties use three key activities:

  1. Project brainstorming. Before we are even sure that the teachers know how to turn on their computers, we ask them to identify projects they wish to undertake during the workshop. The projects may be collaborative, personal, or curriculum-related, and they need not relate to the subjects they teach.
  2. Powerful ideas. Each day begins with a discussion of a relevant education issue or philosophical concern. Topics might include the history of Logo and your role in technological innovation (what the school has already accomplished); process approaches to learning; or personal learning stories. The topic for the final day, “What does this have to do with school?” is designed to help teachers reflect on their workshop experiences and make connections to their role as teachers.
  3. Problem solving off the deep end. One or two problem-solving activities are planned to demonstrate how teachers can solve complex open-ended problems through collaborative effort. These exercises help the participants to understand that not every problem has only one correct answer and that some problems may have no answers.

Slumber parties are offered on a regular basis. Because the primary goal of the workshops is to support a learning community, teachers and administrators are encouraged to participate in more than one. Participants gain appreciation for the power and expressive potential of LogoWriter. And, they are reminded that their colleagues are creative, imaginative learners like themselves.

Build-a-Book Residential Workshops

The origin for these workshops is based in the book, Build-a-Book Geometry. The book chronicles the author’s experience as a high school geometry teacher who spent an entire year encouraging his students to write their own geometry text through discovery, discussion, debate, and experimentation. It provides an exciting model for taking what teams of students know about a concept and then giving them challenges built upon their understanding or misunderstanding of it. The teacher then uses the responses to elicit a set of issues to which another team will respond, and so on. Throughout the process, each team keeps careful notes of hypotheses, processes, and conclusions, then shares these notes with the other teams during the process of writing the class book.

Healy’s ideas inspired a format that addresses confusing topics through discussion, problem solving, collaboration, and journal writing. Before the workshop, I ask each participant to identify three LogoWriter programming issues that they do not understand or that they need to have clarified. Small teams of teachers spend hours answering the questions and explaining numerous programming (and often mathematical) issues to one another. This exercise stresses the most important component of cooperative learningæinterdependence. When each group has answered all questions to its collective satisfaction, each teacher meets with a member of another team to explain what his or her group has accomplished.

Participants explore emerging questions through projectsædesigned by the leaderæthat are intended to use increasingly sophisticated skills. For example, teachers discuss the concept of programming elegance as they review student projects, and they keep careful notes of their programming processes, questions, and discoveries. These collective notes are included in the class book (disk). This disk becomes a valuable personal reference that the teachers can use in their own classrooms.

Teacher assessments of the residential workshops have been extremely positive. And, the quality of the experience makes the cost quite low when compared with the cost of providing an ongoing series of two-hour after-school workshops. Schools routinely spend much more time teaching concepts in bite-size chunks, while leaving real learning to chance.

Suggestions for Success

Following are some guidelines for successful technology implementation.

  • Work with the living.
    Because schools have limited technological and teacher development resources, those that do exist should be allocated prudently. If energy and resources are focused on creating a few successful models of classroom computing each year, the enthusiasm among teachers will be infectious. Of course, the selection of models must be broad enough to engage teachers of differing backgrounds and subject areas.
  • Eliminate obstacles.
    It should not be surprising that teachers without sufficient access to computer technology don’t embrace its use. How many workshops must a teacher attend to get a new printer ribbon? How long must a teacher wait to get enough lab time for his or her students to work on a meaningful project? The idea that schools should not buy computers before the teachers know what to do with them must be discarded.
  • Stay on message.
    Administrators must articulate a clear philosophy regarding how the new technology is to be used and how the culture of the school is likely to change. Communication between teachers and administrators must be honest, risk-free, and comfortable. Administrators must constantly clarify the curricular content and traditions the school values, as well as specify the outdated methodology and content that is to be eliminated. Teachers must be confident that their administrators will support them through the transitional periods.
  • Work on the teacher’s turf.
    Those responsible for staff development should be skilled in classroom implementation and should work alongside the teacher to create models of constructive computer use. It is important for teachers to see what students can do; this is difficult to accomplish in a brief workshop at the end of a long workday.
  • Plan off-site institutes.
    Schools must ensure that teachers understand the concepts of collaborative problem solving, cooperative learning, and constructivism. Accordingly, teachers must have the opportunity to leave behind the pressures of family and school for several days in order to experience the art of learning with their colleagues. Off-site residential “whole learning” workshops can have a profoundly positive effect on a large number of teachers in a short period of time.
  • Provide adequate resources.
    Nothing dooms the use of technology in the classroom more effectively than lack of support. Administrators can support teacher efforts by providing and maintaining the technology requested and by providing access to a working printer and a supply of blank disks.
  • Avoid software du jour.
    Many educators feel considerable pressure to constantly find something new to do with their computers. Unfortunately, this newness is equated with amassing more and more software. It is reckless and expensive to jump on every software bandwagon. The use of narrow, skill-specific software provides little benefit to students. Choose an open-ended environment, such as MicroWorlds, in which students can express themselves in many ways that may also converge with the curriculum.
  • Practice what you preach.
    Staff development experiences should be engaging, interdisciplinary, collaborative, heterogeneous, and models of constructivist learning.
  • Celebrate initiative.
    Recognize teachers who have made a demonstrated commitment to educational computing. Free them from some duties so they can assist colleagues in their classrooms; encourage them to lead workshops; and give them access to additional hardware.
  • Offer in-school sabbaticals.
    Provide innovative teachers with the in-school time and the resources necessary to develop curriculum and to conduct action research.
  • Share learning stories.
    Encourage teachers to reflect on significant personal learning experiences. Encourage them to share these experiences with their colleagues and to discuss the relationship between their own learning and their classroom practices. Formal action research projects and informal get-togethers are both effective. Teachers routinely relate that their most beneficial professional development experience is the opportunity to talk with peers.
  • Help teachers purchase technology.
    Schools should help fund 50-80 percent of a teacher’s purchase of a personal computer. This support demonstrates to teachers a shared commitment to educational progress. Partial funding gives teachers the flexibility to purchase the right computer configuration. Consider offering an annual stipend for upgrades and peripherals.
  • Cast a wide net.
    No one approach to staff development works for all teachers. Provide a combination of traditional workshops, in-classroom collaborations, mentoring, conferences, and whole-learning residential workshops from which teachers can choose.

Although many administrators dream of providing only a handful of computers in their schools, the reality of what is happening in schools across Australia requires serious consideration. Universal computing is in our future, and staff development programs must be geared to that fact. Modern staff development must help teachers not only embrace the technology, but also anticipate the classroom change that will accompany widespread use.

We must recognize that the only constant on which we can depend is the teacher. Our schools will only be as good as the least professional teacher. Staff development must enhance professionalism and empower teachers to improve the lives of their students. Our children deserve no less.

All of my friends know I have serious reservations about smarmy self-important libertarianism of TED and loathe speaking in the format – essentially a television program without any of the accoutrements of a television studio. That said, I’ve now performed three of them.

My first TEDx Talk made me ill for months before and weeks following the talk. The pressure was unbearable. You see, I wanted to go viral and become a millionaire – an overnight sensation like that guy who has taken such a courageous stance for creativity. The clock got me and I left half of my prepared thoughts on the cutting room floor. That said, people seem to like the talk anyway. For that I am grateful.

My first TED experience was so unpleasant that I sought an opportunity to try it again. This time, I promised myself that I would not stress out or over plan. That strategy paid off and the experience was a lot less traumatic. The only problem is that the venue audio was a disaster and I’m yelling through the entire talk. Don’t worry. I won’t be yelling when I publish a print anthology of these performances.

In March, I was invited by my longtime client, The American School of Bombay, to do another TEDx Talk. I assembled my vast team of advisors and brainstormed how I could turn this talk into riches beyond my wildest dreams. I quickly abandoned that idea and decided to use the occasion to honor my dear friend, mentor, and colleague, Dr. Seymour Papert in a talk I called, “Seymour Papert – Inventor of Everything*

I hope you enjoy it (or at least learn something before I lose another game of Beat the Clock)! Please share, tweet, reload the page 24/7! I have not yet given up on becoming an overnight sensation.

2014 – Seymour Papert – Inventor of Everything*

2013 – We Know What to Do

2011 – Reform™

 

I am always looking for ways to help teachers be more intentional and create deeper learning experiences for their students. Today, through the haze of Bombay Belly, I had an epiphany that may help you in similar learning situations.

Authentic project-based learning is in my humble opinion incompatible with curricular tricks like, Understanding by Design, where an adult determines what a children should know or do and then gives the illusion of freedom while kids strive to match the curriculum author’s expectation.

I view curriculum as the buoy, not the boat and find that a good idea is worth 1,000 benchmarks and standards.

Whether you agree with me or not, please consider my new strategy for encouraging richer classroom learning. I call it, “…and then?”

It goes something like this. Whenever a teacher asks a kid or group of kids to participate in some activity or engage in a project, ask, “..and then?” Try asking yourself, “..and then?” while you teach.

For example, when the kindergarten teacher has every child make a paper turkey or a cardboard clock, ask, “…and then?” This is like an improvisational game that encourages/requires teachers to extend the activity “that much” further.

You ask first graders to invent musical instrument. Rather than being content with the inventions, ask, “…and then?” You might then decide to:

  1. Ask each kid to compose a song to be played on their instrument
  2. Teach their song to a friend to play on their invented instrument
  3. The next day ask the kids to play the song they were taught yesterday from memory
  4. When they can’t remember how, you might ask each “composer” to write down the song so other players can remember it
  5. This leads to the invention of notational forms which can be compared and contrasted for efficacy or efficiency. This invention of notation leads to powerful ideas across multiple disciplines.

I think, “…and then?,” has application at any age and across any subject area.

Try it for yourself and let me know what you think!

Four out of five kindergarteners agree.

foam blocks 1 smaller
.
foam blocks 2 smaller

Foam blocks suck.

 

Candidly, I have not been enthusiastic about teaching “computational thinking” to kids. In nearly every case, computational thinking seemed to be a dodge intended to avoid computing, specifically computer programming.

“There is no expedient to which a man will not resort to avoid the real labor of thinking.”

(Sir Joshua Reynolds)

Programming is an incredibly powerful context for learning mathematics while engaged in being a mathematician. If mathematics is a way of making sense of the world, computing is a great way to make mathematics.

Most of the examples of computational thinking I’ve come across seemed like a cross between “Computer Appreciation” and “Math Appreciation.” However, since smart people were taking “computational thinking” more seriously, I spent a great deal of time thinking about a legitimate case for it in the education of young people.

Here it is…

Computational thinking is useful when modeling a system or complex problem is possible, but the programming is too difficult.

Examples will be shared in other venues.

“Young people have a remarkable capacity for intensity….”

Those words, uttered by one of America’s leading public intellectuals, Dr. Leon Botstein, President of Bard College, has driven my work for the past six or seven years. It is incumbent on every educator, parent, and citizen to build upon each kid’s capacity for intensity otherwise it manifests itself as boredom, misbehavior, ennui, or perhaps worst of all, wasted potential.

Schools need to raise the intensity level of their classrooms!

However, intensity is NOT the same as chaos. Schools don’t need any help with chaos. That they’ve cornered the market on.

capacity500
Anyone who has seen me speak is familiar with this photograph (above). It was taken around 1992 or 1993 at Glamorgan (now Toorak) the primary school campus of Geolong Grammar school in Melbourne, Australia. The kids were using their laptops to program in LogoWriter, a predecessor to MicroWorlds or Scratch.

I love this photo because in the time that elapsed between hitting the space bar and awaiting the result to appear on the screen, every ounce of the kid’s being was mobilized in anticipation of the result. He was literally shaking,

Moments after that image was captured, something occurred that has been repeated innumerable times ever since. Almost without exception, when a kid I’m teaching demonstrates a magnificent fireball of intensity, a teacher takes me aside to whisper some variation of, “that kid isn’t really good at school.”

No kidding? Could that possibly be due to an intensity mismatch between the eager clever child and her classroom?

I enjoy the great privilege of working in classrooms PK-12 all over the world on a regular basis. This allows me observe patterns, identify trends, and form hypotheses like the one about a mismatch in intensity. The purpose of my work in classrooms is to model for teachers what’s possible. When they see through the eyes, hands, and sometimes screens of their students, they may gain fresh perspectives on how things need not be as they seem.

Over four days last month, I taught more than 500 kids I never met before to program in Turtle Art and MicroWorlds EX. I enter each classroom conveying a message of, “I’m Gary. We’ve got stuff to do.” I greet each kid with an open heart and belief in their competence, unencumbered by their cumulative file, IEP, social status, or popularity. In every single instance, kids became lost in their work often for several times longer than a standard class period, without direct instruction, or a single  disciplinary incident. No shushing, yelling, time-outs, threats, rewards, or other behavioral management are needed. I have long maintained that classroom management techniques are only necessary if you feel compelled to manage a classroom.

In nearly every class I work with – anywhere, teachers take me aside to remark about how at least one kid shone brilliantly despite being a difficult or at-risk student. This no longer surprises me.

In one particular class, a kid quickly caught my eye due to his enthusiasm for programming. The kid took my two minute introduction to the programming language and set himself a challenge instantly. I then suggested a more complex variation. He followed with another idea before commandeering the computer on the teacher’s desk and connected to the projector in order to give an impromptu tutorial for classmates struggling with an elusive concept he observed while working on his own project. He was a fine teacher.

Then the fifth grader sat back down at his desk to continue his work. A colleague suggested that he write a program to draw concentric circles. A nifty bit of geometric and algebraic thinking followed. When I kicked things up a notch by writing my own even more complex program on the projected computer and named it, “Gary Defeats Derrick.” The kid laughed and read my program in an attempt to understand my use of global variables, conditionals, and iteration. Later in the day, the same kid chased me down the hall to tell me about what he had discovered since I left his classroom that morning.

Oh yeah, I later learned that the very same terrific kid is being drummed out of school  for not being their type of student.

I learned long ago. If a school does not have bad children, it will make them.

 

Papert circa 1999 enjoying the work of a middle schooler

I’ve been thinking a lot about my friend, colleague, and mentor Dr. Seymour Papert a lot lately. Our new book, “Invent to Learn: Making, Tinkering, and Engineering in the Classroom,” is dedicated to him and we tried our best to give him the credit he deserves for predicting, inventing, or laying the foundation for much of what we now celebrate as “the maker movement.” The popularity of the book and my non-stop travel schedule to bring the ideas of constructionism to classrooms all over the world is testament to Seymour’s vision and evidence that it took much of the world decades to catch up.

Jazz and Logo are two of my favorite things in life. They both make me feel bigger than myself and nurture me. Jazz and Logo provide epistemological lenses through which I view the world and appreciate the highest potential of mankind. Like jazz, Logo has been pronounced dead since its inception, but I KNOW how good it is for kids. I KNOW how it makes them feel intelligent and creative. I KNOW that Logo-like activities hold the potential to change the course of schooling. That’s why I have been teaching it to children and their teachers in one form or another for almost 32 years.

I’ve been teaching a lot of Logo lately, particularly a relatively new version called Turtle Art. Turtle Art is a real throwback to the days of one turtle focused on turtle geometry, but the interface has been simplified to allow block-based programming and the images resulting from mathematical ideas can be quite beautiful works of art. (you can see some examples in the image gallery at Turtleart.org)

Turtle Art was created by Brian Silverman, Artemis Papert (Seymour’s daughter) and their friend Paula Bonta. Turtle Art itself is a work of art that allows learners of all ages to begin programming, creating, solving problems, and engaging in hard fun within seconds of seeing it for the first time. Since an MIT undergraduate in the late 1970s, Brian Silverman has made Papert’s ideas live in products that often exceeded Papert’s expectations.

There aren’t many software environments or activities of any sort that engage 3rd graders, 6th graders, 10th graders and adults equally as Turtle Art. I wrote another blog post a year or so ago about how I wish I had video of the first time I introduced Turtle Art to a class of 3rd graders. Their “math class” looked like a rugby scrum, there was moving, and wiggling, and pointing, and sharing and hugging and high-fiving everywhere while the kids were BEING mathematicians.

Yesterday, I taught a sixth grade class in Mumbai to use Turtle Art for the first time. They worked for 90-minutes straight. Any casual observer could see the kids wriggle their bodies to determine the right orientation of the turtle, assist their peers, show-off their creations, and occasionally shriek with delight in a reflexive fashion when the result of their program surprised them or confirmed their hypothesis. As usual, a wide range of mathematical ability and learning styles were on display. Some kids get lost in one idea and tune out the entire world. This behavior is not just reserved to the loner or A student. It is often the kid you least expect.

Yesterday, while the rest of the class was creating and then modifying elaborate Turtle Art programs I provided, one sixth grader went “off the grid” to program the turtle to draw a house. The house has a long and checkered past in Logo history. In the early days of Turtle Graphics, lots of kids put triangles on top of squares to draw a house. Papert used the example in his seminal book, “Mindstorms: Children, Computers, and Powerful Ideas,” and was then horrified to discover that “making houses” had become de-facto curriculum in classrooms the world over. From then on, Papert refrained from sharing screen shots to avoid others concluding that they were scripture.

It sure was nice to see a kid make a house spontaneously, just like two generations of kids have done with the turtle. It reminded me of what the great jazz saxophonist and composer Jimmy Heath said at Constructing Modern Knowledge last summer, “What was good IS good.”

Love is all you need
This morning, I taught sixty 10th graders for three hours. We spend the first 75 minutes or so programming in Turtle Art.  Like the 6th graders, the 10th graders  had never seen Turtle Art before. After Turtle Art,  the kids could choose between experimenting with MaKey MaKeys, wearable computing, or Arduino programming. Seymour would have been delighted by the hard fun and engineering on display. I was trying to cram as many different experiences into a short period of time as possible so that the school’s teachers would have options to consider long after I leave.

After we divided into three work areas, something happened that Papert would have LOVED. He would have given speeches about this experience, written papers about it and chatted enthusiastically about it for months. Ninety minutes or so after everyone else had moved on to work with other materials, one young lady sat quietly by herself and continued programming in Turtle Art. She created many subprocedures in order to generate the image below.


Papert loved love and would have loved this expression of love created by “his turtle.” (Papert also loved wordplay and using terms like, “learning learning.” I’m sure he would be pleased with how many times I managed to use love in one sentence.) His life’s work was towards the creation of a Mathland where one could fall in love with mathematical thinking and become fluent in the same way a child born in France becomes fluent in French. Papert spoke often of creating a mathematics that children can love rather than wasting our energy teaching a math they hate. Papert was fond of saying, “Love is a better master than duty,” and delighted in having once submitted a proposal to the National Science Foundation with that title (it was rejected).

The fifteen or sixteen year old girl programming in Turtle Art for the first time could not possibly have been more intimately involved in the creation of her mathematical artifact. Her head, heart, body and soul were connected to her project.

The experience resonated with her and will stay with me forever. I sure wish my friend Seymour could have seen it.

Love,

 

 


Turtle Art is free for friends who ask for a copy, but is not open source. It’s educational efficacy is the result of a singular design vision unencumbered by a community adding features to the environment. Email contact@turtleart.org to request a copy for Mac, Windows or Linux.

A boyhood dream has come true. I was interviewed by California School Business Magazine!

I certainly sized the opportunity to pull no punches. I left no myth behind.  Perhaps a few school business administrators will think differently about some of their decisions in the future.

A PDF of the article is linked below. I hope you enjoy the interview and share it widely!

Edtech Expert Discusses the Revolution in Computing

I’ve watched American Idol since its inception and am a fan. Months ago, I predicted that Angie would win this year. we will know for sure in a few weeks.

In the post-Simon Cowell years of American Idol, the quality of judging has become tedious, cloying and adoring of the young contestants. There has been little instructive teaching for the kids competing or the audience at home. That’s a shame because American Idol used to feature legendary artists every week as mentors who would perform a quickie masterclass for contestants (and audience) who otherwise would enjoy no such access to expertise. One of my favorite mentors a few years back was Harry Connick, Jr. It was also one of the lowest rated episodes of the season. Despite the relative (un)popularity of Mr. Connick, he taught the kids, played with them and wrote charts suited to their talents. He was a great mentor.

I was thrilled to see Harry back on Idol again this week and he ignited a firestorm when he refused to agree with the incredibly terrible advice being dispensed by an incredibly disingenuous Randy Jackson. You can the details of his awful advice in the well-written article linked below, but suffice to say that Mr. Jackson knows better. He may not have the talent and musical knowledge of Harry Connick, Jr., but he has enjoyed a great deal of success in the music business. If Randy Jackson had been paying for Kree’s studio time as a producer, his advice would have been exactly the same as that of Mr. Connick.

After Wednesday night’s show, an educator colleague of mine posted the following message on Facebook:

Harry Connick seems sort of mean and opinionated. #justsayin
I admit that I lost it and posted the following comment:
TEACHERS SHOULD HAVE OPINIONS and be great at what they do!I could not disagree more. American Idol vs. Harry Connick Jr. is a great metaphor for everything wrong with American culture. The entire season has been spent repeating clichés and telling the contestants that they are geniuses. Celebrity and popularity are not the same as talent or artistry.

How dare those kids call themselves artists? Artist, reformer and revolutionary are terms that must be bestowed upon you by others. As Seinfeld said, “I’m 17. Why aren’t I huge?”

Harry Connick, Jr. is an incredibly gifted singer, pianist, composer, arranger, technology pioneer and he acts too. He has been a professional musician since he was 5.

He is an expert in jazz history and the American songbook.

Amber and Kree’s performance of classic standards was atrocious. It is NOT unreasonable to expect “singers” about to get rich beyond their dreams to learn or understand a song. Countless thousands of peers of the “Idols” studying music around the country do so. In fact, jazz majors at Julliard are required to memorize every piece of music they perform, including full big band arrangements.

My friend Emmet Cohen is 22 years old and knows a few thousand songs that he can play and improvise on in 12 keys. That’s artistry and talent.

Harry gave Kree incredibly good advice and she ignored all of it. She added runs to almost every note. It was unmusical.

Harry Connick is the expert. Kree is the student. She should behave accordingly and be open to instruction. Randy’s advice to her was completely disingenuous. He would NEVER tolerate such a shambolic performance if he was spending his time or money producing her.

The judges do the kids no favor my not teaching them or asking them to “just be Kree.” Being Kree is terrible advice. She’s an amateur with a lot to learn.

I sure wish every American student could have a good music teacher. It would make the world a better place!

It is unclear as to whether the American Idol contestants were disrespectful of Harry Connick, Jr. and his expertise or just so musically ignorant and untalented that they are incapable of following his advice.
Some of you might be asking, “Why are we making kids who want to be pop-stars sing show-tunes?
There are two answers:
  1. As Randy Jackson reminds us constantly, “this is a singing competition!” Singers should be able to sing anything.
  2. The #1 album today is by Michael Bublé, a guy who sings the Great American Songbook. These classic songs are contemporary hits.
“The point Connick tried to make, which Jackson didn’t want to hear, was that the show’s contestants didn’t know these classic songs well enough to take liberties with their melodies and lyrics. In doing so, they were murdering the music.” – John Stark