Gary Stager’s work and educational philosophy are based on four ideas.

  1. The Piagetian idea that “knowledge is a consequence of experience.”
  2. Xenophon’s admonition that “nothing beautiful can ever be forced.”
  3. Schools have a sacred obligation to introduce children to things they don’t yet know they love.
  4. Computational technology makes complexity accessible to children and allows them to solve problems their teachers may never have anticipated.
These four ideas come together in a desire to make school the best seven hours of a kid’s life where she may become good at doing things and experience the satisfaction accompanying working towards continuous progress in areas that matter to her. The future viability of school depends on identifying the types of experiences we want our children to have much of the time. These experiences must benefit from being co-located in the same space at the same time and are rewarded by the participation of students. (152 words – oops!)


Three little words that I have dreaded since 1968. I remain haunted by the hideous nature of my own school experience. Each back-to-school commercial and increasingly premature retail display fills me with dread. As a parent, “Back-to-School Night,” was too often a torturous affair filled with the recitation of gum rules, awful presentations, and assorted violations of the Geneva Convention.

However, I look forward to going back to school tomorrow. This is my second year as the Special Assistant to the Head of School for Innovation at The Willows Community School in Culver City, California.

The Willows is a lovely twenty-one year-old PK-8 progressive independent school filled with truly happy children and terrific educators who know each child. The school is filled with play, the arts, and inquiry. The kids crack me up and my colleagues are genuinely interested in collaboration. Their willingness to learn and try things differently creates a context in which I can do good work on behalf of the kids we serve. I am truly grateful for their generosity of spirit and hospitality. The school is a lovely place for kids to learn because it is a great place for teachers. This also results in virtually zero faculty turnover.

Happy & school need not be contradictory terms.

My responsibilities at The Willows include teacher mentoring, curriculum design, professional development, working with groups of kids, and organizing special events. Much of what I do consists of wandering into classrooms, asking, “Hey, whatcha doing?” and then suggesting, “Why don’t you try this instead?”

On any given day my work might include recommending Australian fiction, integrating Romare Beardon into the curriculum, turning the kindergarten “bee unit” upside down, teaching math or programming to 2nd graders, brainstorming project ideas with teachers, participating in a learning lunch, or organizing a Superheroes of the Maker Movement event. I help out with the school’s extensive “making” opportunities and even enjoy meetings. One rewarding aspect of the job is when I excite a teacher about trying some nutty idea and then sell the administration on supporting that R&D. I adore being an advocate for teachers.

My calendar is plenty full and I do not need to work in a school on a regular basis. Few of my peers on the “circuit” do so. But, I love to teach, particularly to teach teachers, and I cherish having a canvas on which to paint my ideas for making schools more hospitable to the intentions of children. I am not willing to give up on schools because that’s where the kids are.

The Willows has viewed Constructing Modern Knowledge as a critical piece of their extensive professional learning portfolio. Each year, between 6 and 10 Willows educators participate in CMK. This builds community around shared experiences and brings cutting-edge ideas and expertise back to the school. Several young teachers who attended CMK for the first time this past July have been eager to seek my advice on everything from classroom decor to writing prompts to project ideas for the coming school year.

I am enormously grateful to the founding Head of The Willows Lisa Rosenstein for having the flexibility, vision, and sense of humor required to make me part of their team. As a keynote speaker, consultant, teacher educator, author, and clinician, I spend 1/3 – 1/2 of each year on the road. When I’m home, I rush back to The Willows. My travel provides diverse experience, an ability to identify patterns, and experience that I hope benefits our school.

A great part of working at The Willows is I get to be an educational leader, not computer boy. I am unconstrained by the edtech ghetto while getting to use technology the way I always have to amplify human potential and to provide learners with opportunities that would not exist without access to computation. I relish the chance to help fourth grade teachers create a 3D thematic tableau outside of their classroom window and prefer it to the trivia consuming too much of what is know currently as educational technology. That said, The Willows is a leader in the continuous use of constructive, creative, computationally-rich technology from PK -8.

Aside from the children I have the pleasure of hanging out with and the great colleagues I work with, the greatest joy associated with my job at The Willows is sharing an office with my friend, former student, and colleague Amy Dugré, Director of Technology. Amy is a spectacular educator, fine leader, and among the best practicing constructionists working in schools anywhere. I cherish her selflessness, friendship, and support.

Wherever or whatever you teach, here’s to a great new year! Please remember to do the right thing. If you won’t stand between kids and the madness, who will?

Note: You will find no greater advocate for public education than myself. Regrettably, the current political climate makes it impossible for a public school to demonstrate the sort of hiring flexibility that I have experienced at The Willows. What I learn each day, is shared with every school and educator I have the privilege of working with anywhere in the world.

I’ve been teaching boys and girls to program computers professionally since 1982 when I created one of the world’s first summer camp computing programs. I led professional development at Methodist Ladies’ College in Melbourne, Australia for a few years beginning in 1990. Girls at MLC used their personal laptops to program in LogoWriter across the curriculum. (read about the history of 1:1 computing and programming here). That work led to perhaps as many as 100,000 Australian boys and girls learning to program computers in the early 1990s.

I taught incarcerated kids in a teen prison to program as part of my doctoral research and currently teach programming to K-8 girls and boys at The Willows Community School

Along the way, I’ve found it easy to engage girls and their teachers in computer programming. Ample access to computers. high expectations, and a competent teacher are the necessary conditions for girls to view themselves as competent programmers. Such confidence and competence unlocks the world of computer science and gaining agency over the machine for learners.

That said, there is plenty of evidence that girls view computer science like kryptonite. Mark Guzdial, Barbara Ericson, and others have done a yeoman job of documenting the dismal rates of female participation in school or higher-ed computer science. This reality is only aggravated by the sexism and misogyny commonplace in high-tech firms and online.

Programming is fun. It’s cool. It’s creative. It may not only lead to a career, but more importantly grants agency over an increasingly complex and technologically sophisticated world. Being able to program allows you to solve problems and answer Seymour Papert’s 47 year-old  question, “Does the computer program the child or the child program the computer?”

Add the ubiquity of microcomputers to accessibility of programming languages like Turtle Art, MicroWorlds, Scratch, or Snap! and there is no excuse for every kid to make things “out of code.”

All of that aside, girls in the main just don’t find computer science welcoming, relevant, or personally empowering. Entire conferences, government commissions, volumes of scholarship, and media decry the crisis in girls and S.T.E.M. Inspiring girls to embrace computer science remains the holy grail. But…

Screen Shot 2015-06-11 at 5.19.20 PM

The Rolling Spider Minidrone

I found the key!


Girls love to program drones to fly.

Seriously. Drones.

There is a big in this simple Tickle program intended to fly away and back to its operator. Can you find it? This is an opportunity to reinforce geometric concepts.

There are 2 bugs in this simple Tickle program intended to fly away and back to its operator. Can you find them?
This is an opportunity to reinforce geometric concepts.

I recently purchased an inexpensive small drone, The Parrot Rolling Spider Mini Drone. ($80 US) If flying drones is cool. Programming them to fly is even cooler.

Thanks to a lovely dialect of Scratch called Tickle, you can use an iPad to program a flying machine! Most drones have virtual joystick software for flying the plane in real-time, but programming a flight requires more thought, planning, and inevitable debugging. Programmer error, typos, a breeze, or physical obstacles often result in hilarity.

Earlier this week, I brought my drone and iPad to a workshop Super-Awesome Sylvia and I were leading. Primary and secondary school students from a variety of schools assembled to explore learning-by-making.

Late in the workshop, I unleashed the drone.

Kids were immediately captivated by the drone and wanted to try their hand at programming a flight – especially the girls!

I truly love how such natural play defies so many gender stereotypes. Programming to produce a result, especially control is super cool for kids of all ages. (It’s also worth mentioning that this one of the few “apps” for the iPad that permits actual programming, not just “learning about coding.”)

Primary students program the drone while a boy patiently awaits his turn.

Primary students program the drone intensely while a boy patiently awaits his turn.

look up drone

Secondary school girls track the drone

Can you read this program and predict the drone's behavior?

Can you read this program and predict the drone’s behavior?


There are aspects of the “art of teaching” I have long taken for granted, but are apparently no longer taught in preservice education programs. Classroom centers is one such critical topic. Since I cannot find the seminal book(s) or papers on the importance or creation of centers, I created the following document for the school I work for.

Thoughts on Classroom Centers (v 1.0)
Gary S. Stager, Ph.D.
Special Assistant to the Head of School for Innovation
The Willows Community School
April 2015


Centers are clearly delineated areas in the classroom where students may work independently or in small groups on purposeful activities without direct or persistent teacher involvement. Centers may be designed by the teacher or co-constructed with students. Deliberate materials are presented in a center to scaffold a child’s learning, or nurture creativity. Such materials may be utilized in both a predictable and serendipitous fashion. Centers afford students with the necessary time to take pride in one’s work, overcome a significant challenge, develop a new talent, or deepen a relationship (with a person or knowledge domain).

“Learning as a process of individual and group construction –

Each child, like each human being, is an active constructor of knowledge, competencies, and autonomies, by means of original learning processes that take shape with methods and times that are unique and subjective in the relationship with peers, adults, and the environment.

The learning process is fostered by strategies of research, comparison of ideas, and co-participation. It makes use of creativity, uncertainty, intuition, [and] curiosity. It is generated in play and in the aesthetic, emotional, relational, and spiritual dimensions, which it interweaves and nurtures. It is based on the centrality of motivation and the pleasures of learning.” (Reggio Children, 2010)


  • Minimize direct instruction (lecture)
  • Recognize that students learn differently and at different rates
  • Reduce coercion
  • Honor student choice
  • Increase student agency
  • Make classrooms more democratic
  • Enhance student creativity
  • Build student competence and independence
  • Employ more flexible uses of instructional time
  • Inspire cross-curricular explorations
  • Develop the classroom as the “3rd teacher”
  • Encourage more student-centered classrooms
  • Respect the centrality of the learner in learning
  • Create more productive contexts for learning
  • Supports the Hundred Languages of Children
  • Match a child’s remarkable capacity for intensity
  • Provide opportunities for teachers to sit alongside students
  • Make learning visible
  • Shift the teacher’s role from lecturer to research responsible for making private thinking public – invisible thinking visible
  • Team teaching in the best collegial sense


  • Increased self-reliance, self-regulation and personal responsibility
  • Shift in agency from teacher to student
  • Development of project-management skill
  • Supports project-based learning
  • Opportunities for “flow” experiences (Csikszentmihalyi, 1991)
  • Intensify learning experiences
  • Encourage focus
  • Expand opportunities for:
    • Creative play
    • Informal collaboration
    • Experimentation
    • Appropriation of powerful ideas
  • Acknowledges the curious, creative, social and active nature of children
  • Matches the individual attention spans of students
  • Reduces boredom
  • Increases student engagement
  • Teachers get to know each student (better)
  • Recognition that quality work takes time
  • Acknowledges the centrality of the learner in knowledge construction
  • Thoughtful documentation of student learning by teachers
  • Minimize misbehavior


Experimentation/laboratory center
A place for experimentation 

Project center
An area where a long-term project may be undertaken and securely stored

Game center
A place where students play games that helps develop specific concepts, logic, or problem-solving skills

Studio center
An art center where children sculpt, paint, animate, draw, etc… with sufficient light and appropriate materials.

Creative play center

  • Dress-up area
  • Puppet theatre
  • Blocks/LEGO/Construction with found materials

Classroom library
A comfortable well-lit area, stocked with a variety of high-interest reading material

Pet center
The class pet to observe, care for, and in some cases, play with

Plant center
Classroom garden to care for

Listening center
A setting where students can listen to recordings or watch a video with headphones


  • Learning centers should neither be chores or Stations of the Cross. Flexibility, student choice, and actions that do not disturb classmates are hallmarks of the centers approach.
  • Centers should not be managed with a stopwatch. “Fairness” is not a priority, except if there are scarce materials.
  • Learning center use should not be used as a reward or punishment.


  • Create clear and concise prompts, questions to ponder or project ideas. Place these prompts on index cards, a single sheet of paper, or in a binder.
  • Less is more! Do not clutter up a center or overwhelm a learner with too many options.
  • Keep prompts simple and not overly prescriptive. Allow for serendipity.
  • Rotate out “stale” materials – things that students no longer show interest in
  • Assign classroom roles for tidying-up centers
  • Place louder centers away from quieter areas in the classroom.
  • Provide safety materials and instruction when appropriate at centers



Csikszentmihalyi, M. (1991). Flow: The Psychology of Optimal Experience (Reprint ed.). NY: Harper Perennial.

Reggio Children. (2010). Indications – Preschools and infant toddler centres of the municipality of Reggio Emilia (L. Morrow, Trans.). In Infant toddler centers and preschools of Instituzione of the municipality of Reggio Emilia (Ed.): Reggio Children.

PBL 360 Overview – Professional Development for Modern Educators

Gary S. Stager, Ph.D. and his team of expert educators travel the world to create immersive, high-quality professional development experiences for schools interested in effective 21st century project-based learning (PBL) and learning by doing. Whether your school (or school system) is new to PBL, the tools and technologies of the global Maker Movement, or looking to sustain existing programs, we can design flexible professional learning opportunities to meet your needs, PK-12.

Our work is based on extensive practice assisting educators on six continents, in a wide variety of grade levels, subject areas and settings. Dr. Stager has particular experience working with extremely gifted and severely at-risk learners, plus expertise in S.T.E.M. and the arts. The Victorian State of Victoria recently offered a highly successful three-day PBL 360 workshop for members of their “New Pedagogies Project.”

PBL 360 captures the spirit of the annual Constructing Modern Knowledge summer institute in a local setting.


Professional growth is ongoing, therefore professional development workshops need to be viewed as part of a continuum, not an inoculation. The PBL professional development workshops described below not only reflect educator’s specific needs, but are available in one, two or three-day events, supplemented by keynotes or community meetings, and may be followed-up with ongoing mentoring, consulting or online learning. Three days is recommended for greatest effect and capacity building.

While learning is interdisciplinary and not limited to age, we can tailor PD activities to emphasize specific subjects or grade levels.

These experiences embrace an expanding focus from learner, teacher, to transformational leader with a micro to systemic perspective. Video-based case studies, hands-on activities and brainstorming are all part of these highly interactive workshops.

Guiding principles

  • Effective professional development must be situated as close to the teacher’s actual practice as possible
  • You cannot teach in a manner never experienced as a learner
  • Access to expertise is critical in any learning environment
  • Practice is inseparable from theory
  • We stand on the shoulders of giants and learn from the wisdom of those who ventured before us
  • Modern knowledge construction requires computing
  • Learning and the learner should be the focus of any education initiative
  • Children are competent
  • School transformation is impossible if you only change one variable
  • Things need not be as they seem

PBL 360

Effective project-based learning requires more than the occasional classroom project, no matter how engaging such occasional activities might be. PBL 360 helps educators understand the powerful ideas behind project-based learning so they can implement PBL and transform the learning environment using digital technology and modern learning theory. PBL 360 helps teachers build a powerful, personal set of lenses and an ability to see “360 degrees” – meaning in every direction – with which to build new classroom practices.

Teachers, administrators and even parents should consider participation.

Reinventing ourselves

Piaget teaches us that knowledge is a consequence of experience. Therefore, any understanding of project-based learning or ability to implement it effectively must be grounded in personal experience. It is for this reason that all professional development pathways begin with an Invent to Learn workshop. Subsequent workshop days will build upon personal reflections and lessons learned from the Invent to Learn experience. Flexibility and sensitivity to the specific needs of participants is paramount.

Day One – Learning Learning

Join colleagues for a day of hard fun and problem solving — where computing meets tinkering and design. The workshop begins with the case for project-based learning, making, tinkering, and engineering. Next, we will discuss strategies for effective prompt-setting. You will view examples of children engaged in complex problem solving with new game-changing technologies and identify lessons for your own classroom practice. Powerful ideas from the Reggio Emilia Approach, breakthroughs in science education, and the global maker movement combine to create rich learning experiences.

“In the future, science assessments will not assess students’ understanding of core ideas separately from their abilities to use the practices of science and engineering. They will be assessed together, showing that students not only “know” science concepts; but also that they can use their understanding to investigate the natural world through the practices of science inquiry, or solve meaningful problems through the practices of engineering design.” Next Generation Science Standards (2013)

Participants will have the chance to tinker with a range of exciting new low- and high-tech construction materials that can really amplify the potential of your students. The day culminates in the planning of a classroom project based on the TMI (Think-Make-Improve) design model.

Fabrication with cardboard and found materials, squishy electronic circuits, wearable computing, Arduino, robotics, conductive paint, and computer programming are all on the menu.

This workshop is suitable for all grades and subject areas.

Day Two – Teaching

Day two begins with a period of reflection about the Invent to Learn workshop the day before, focusing on teaching and project-based learning topics, including:

  • Reflecting on the Invent to Learn workshop experience
  • Compare and contrast with your own learning experience
  • Compare and contrast with your current teaching practice

Project-based learning

  • What is a project?
  • Essential elements of effective PBL

Thematic curricula

  • Making connections
  • Meeting standards

Design technology and children’s engineering

  • The case for tinkering
  • Epistemological pluralism
  • Learning styles
  • Hands-on, minds-on
  • Iterative design methodology

Teacher roles in a modern classroom

  • Teacher as researcher
  • Identifying the big ideas of your subject area or grade level
  • Preparing learners for the “real world”
  • What does real world learning look like?
  • Lessons from the “Best Educational Ideas in the World”
  • What we can learn from Reggio Emilia, El Sistema and the “Maker” community?
  • Less Us, More Them
  • Shifting agency to learners
  • Creating independent learners

Classroom design to support PBL and hands-on learning

  • Physical environment
  • Centers, Makerspaces, and FabLabs
  • Scheduling

Tools, technology, materials

  • Computers as material
  • Digital technology
  • Programming
  • Choices and options

PBL 360 models teaching practices that put teachers at the center of their own learning, just like we want for students. This in turn empowers teachers to continue to work through the logistics of changing classroom practice as they develop ongoing fluency in tools, technologies, and pedagogy. Teachers who learn what modern learning “feels” like are better able to translate this into everyday practice, supported by ongoing professional development and sound policy.

Day Three – Transformation

The third day focuses on the details and specifics of implementing and sustaining PBL in individual classrooms and collaboratively with colleagues. Participants will lead with:

Program Planning

  • Curricular audit
  • Standards, grade levels
  • Assessment

Classroom Planning

  • Planning PBL for your classroom
  • Curricular projects vs. student-based inquiry
  • Creating effective project prompts

Identifying Change

  • The changing role of the teacher
  • Shaping the PBL-supportive learning environment
  • Does your school day support PBL?
  • Action plan formulation


  • Communicating a unifying vision with parents and the community
  • Adjusting expectations for students, parents, community, administrators, and colleagues
  • Creating alliances
  • Identifying resources

Modern learning embraces a vision of students becoming part of a solution-oriented future where their talents, skills, and passions are rewarded. The changes in curriculum must therefore be matched with a change in pedagogy that supports these overarching goals. Teachers need to understand design thinking, for example, not just as a checklist, but as a new way to shape the learning environment. It is no longer acceptable to simply teach students to use digital tools that make work flow more efficient, nor will it be possible to segregate “making” and “doing” into vocational, non-college preparatory classes.

PBL 360 will help teachers create learning environments that meet these goals with professional development that is innovative, supportive, and sustainable.

Constructive Technology Workshop Materials

Although constructive technology evolves continuously, the following is the range of hardware and software that can be combined with traditional craft materials and recycled items supplied by the client. The specialized materials will be furnished by Constructing Modern Knowledge, LLC. Specific items may vary.

Cardboard construction

  • Makedo
  • Rollobox

  • LEGO WeDo
  • Hummingbird Robotics Kits
  • Pro-Bot
eTextiles/soft circuits/wearable computers

  • Lilypad Arduino Protosnap
  • Lilypad Arduino MP3
  • Flora
Computer Science, programming, and control

  • Scratch
  • Snap!
  • Turtle Art
  • Arduino IDE
  • Ardublocks
Microcontroller engineering and programming

  • Arduino Inventor’s Kits
  • Digital Sandbox
New ways to create electrical circuits

  • Circuit Stickers
  • Electronic papercraft
  • Circuit Scribe pens
  • Conductive paint
  • Squishy Circuits
Electronics and Internet of Things

  • MaKey MaKey
  • littleBits

  • Coin cell batteries
  • Sewable battery holders
  • Foam sheets and shapes
  • Felt
  • Needles and thread
  • Conductive thread and tape
  • Fabric snaps

Additional costs may be incurred for transporting supplies and for consumable materials depending on the number of participants and workshop location(s). Groups of more than 20 participants may require an additional facilitator.

Invent To Learn books may be purchased at a discount to be used in conjunction with the workshop.

About Gary S. Stager, Ph.D.

Gary Stager, an internationally recognized educator, speaker and consultant, is the Executive Director of  Constructing Modern Knowledge. Since 1982, Gary has helped learners of all ages on six continents embrace the power of computers as intellectual laboratories and vehicles for self-expression. He led professional development in the world’s first laptop schools (1990), has designed online graduate school programs since the mid-90s, was a collaborator in the MIT Media Lab’s Future of Learning Group and a member of the One Laptop Per Child Foundation’s Learning Team.

When Jean Piaget wanted to better understand how children learn mathematics, he hired Seymour Papert. When Dr. Papert wanted to create a high-tech alternative learning environment for incarcerated at-risk teens, he hired Gary Stager. This work was the basis for Gary’s doctoral dissertation and documented Papert’s most-recent institutional research project.

Gary’s recent work has included teaching and mentoring some of Australia’s “most troubled” public schools, launching 1:1 computing in a Korean International School beginning in the first grade, media appearances in Peru and serving as a school S.T.E.M. Director. His advocacy on behalf of creativity, computing and children led to the creation of the Constructivist Consortium and the Constructing Modern Knowledge summer institute. Gary is the co-author of Invent To Learn: Making, Tinkering, and Engineering in the Classroom, often cited as the “bible of the Maker Movement in schools”.

A popular speaker and school consultant, Dr. Stager has keynoted major conferences worldwide to help teachers see the potential of new technology to revolutionize education. Dr. Stager is also a contributor to The Huffington Post and a Senior S.T.E.M. and Education Consultant to leading school architecture firm, Fielding Nair International. Gary also works with teachers and students as Special Assistant to the Head of School for Innovation at The Willows Community School in Culver City, California.He has twice been a Visiting Scholar at the University of Melbourne’s Trinity College. Gary currently works as the Special Assistant to the Head of School for Innovation at The Willows Community School in Culver City, California.


Email to inquire about costs and schedule for your customized workshop. We will work with you to create an experience that will change your school, district, or organization forever. Additional ongoing consulting, mentoring, or online learning services are available to meet individual needs.

Summer Institute

Schools should also consider sending personnel to the annual summer project-based learning institute, Constructing Modern Knowledge – (

I started teaching Logo to kids in 1982 and adults in 1983. I was an editor of ISTE’s Logo Exchange journal and wrote the project books accompanying the MicroWorlds Pro and MicroWorlds EX software environments. I also wrote programming activities for LEGO TC Logo and Control Lab, in addition to long forgotten but wonderful Logo environments, LogoExpress and Logo Ensemble.

Now that I’m working in a school regularly, I have been working to develop greater programming fluency among students and their teachers. We started a Programming with Some BBQ “learning lunch” series and I’ve been leading model lessons in classrooms. While I wish that teachers could/would find the time to develop their own curricular materials for supporting and extending these activities, I’m finding that I may just need to do so despite my contempt for curriculum.

One of the great things about the Logo programming language, upon which Scratch and MicroWorlds are built, is that there are countless entry points. While turtle graphics tends to be the focus of what schools use Logo for, I’m taking a decidedly more text-based approach. Along the way, important computer science concepts are being developed and middle school language arts teachers who have never seen value in (for lack of a better term) S.T.E.M. activities, have become intrigued by using computer science to explore grammar, poetry, and linguistics. The silly activity introduced in the link below is timeless, dating back to the 1960s, and is well documented in E. Paul Goldenberg and Wally Feurzig’s fantastic (out-of-print) book, “Exploring Language with Logo.”

I only take credit for the pedagogical approach and design of this document for teachers. As I create more, I’ll probably share it.

My goal is always to do as little talking or explaining as humanly possible without introducing metaphors or misconceptions that add future confusion or may need to remediated later. Teaching something properly from the start is the best way to go.

Commence the hilarity and let the programming begin! Becoming a programmer requires more than an hour of code.

Introduction to Logo Programming in MicroWorlds EX

Modifications may be made or bugs may fixed in the document linked above replaced as time goes by.

In addition to the popular minds-on/hands-on Invent to Learn workshops already offered by Constructing Modern Knowledge, I’m pleased to announce a brand new set of exciting, informative, and practical workshops for schools, districts, and conferences for 2015. Family workshops are a fantastic way to build support for learning by doing in your school.

For more information, email Please include type (workshop, keynote, consulting, etc.), approximate dates, location, and any additional details. We’ll get back to you ASAP!

New Workshops

PBL with littleBits™ new tiny dingbat

littleBits are incredibly powerful snap-together electronic elements that allow learners of all ages to create a wide array of interactive projects. Arts and crafts meet science and engineering when littleBits are available for pro typing or creating super cool new inventions. In addition to knowledge construction with littleBits, participants will explore the following topics.

  • What makes a good project?
  • Effective prompt setting
  • Project-based learning strategies for exploring powerful ideas
  • Less Us, More Them

Wearable Computing new tiny dingbat

An LED, battery, and conductive thread can bring principles of electronics and engineering to learners of all ages. Interactive jewelry, bookmarks, and stuffed toys become a vehicle for making powerful ideas accessible to a diverse population of learners. More experienced participants may combine computer science with these “soft circuits” or “e-Textiles” to make singing suffer animals, animated t-shirts, jackets with directional signals, or backpacks with burglar alarms with the addition of the Lilypad Arduino or Flora microcontroller. Design, STEM, arts, and crafts come to life in this fun and exciting workshop! 

Reycling and Robotics
new tiny dingbat

This workshop uses the incredible Hummingbird Robotics Kit to show how a powerful and easy-to-use microntroller designed for the classroom, common electronic parts (motors, lights, sensors) may be combined with recycled “found” materials and craft supplies to create unique interactive robots from Kindergarten thru high school.  Scratch and Snap! programming brings these creations to life. No experience is required to become a master robotics engineer! Cross-curricular project ideas will be shared.

Introduction to Microcontroller Projects and Arduino Programming
new tiny dingbat

The Arduino open-source microcontroller is used by kids, hobbyists, and professional alike. Arduino is at the heart of interactive electronics projects and is perfect for classroom settings, but can seem intimidating to the initiated. This workshop introduces the foundational electronics, cybernetics and computer science concepts critical to learning and making with Arduino. The Arduino IDE programming environment will be demystified and other environments better suited for children, including Ardublocks and Scratch, will be explored. Strategies for teaching with Arduino will be shared.

new tiny dingbatMaking and Learning in the Primary Years 

Young children are natural inventors, tinkerers, and makers. This workshop builds upon the natural inclinations of young children by adding new “technological colors” to their crayon box. littleBits, Scratch, Turtle Art, Makedo, Makey Makey, Hummingbird robotics kits, LEGO WeDo, soft circuits and more can all enrich the learning process. Timeless craft traditions and recycled junk combine with emerging technology to create a greater range, breadth, and depth of opportunities for learning by doing. Strategies for effective scaffolding, classroom organization, and the use of exciting new technologies in a developmentally appropriate fashion will be discussed. Participants in this workshop will learn how such modern knowledge construction projects are wholly consistent with the best early childhood traditions and support current standards. Dr. Stager is a certified preschool thru eighth grade teacher and an expert in the Reggio Emilia approach.

new tiny dingbatBuild and Program a Truly Personal Computer with the Raspberry Pi

The Raspberry Pi is a ultra low-cost Linux-based computer the size of a deck of playing cards that costs less than $40. It is capable of running open-source productivity software, like Open Office and Google Docs, plus programmed via Scratch, Turtle Art, or Python. You can even run Arduino microcontrollers, power a home-entertainment center, or run your own Minecraft server! Old USB keyboards. mice, TVs or monitors are recycled and repurposed to assemble your complete personal computer. Each participant in this workshop will setup, use, and program their Raspberry Pi in addition to discussing how it might be used across the curriculum. (materials fee applies)

Ah, balance!

Balance is the Fabreze of education policy. It is a chemical spray designed to mask the stench of a two year-old tuna sandwich found in the minvan with the artificial bouquet of an April rain dancing on a lily pad.

  • Balanced literacy got us systemic phonics.
  • Balanced math begot Singapore Math worksheets.
  • Balanced standards produced The Common Core.
  • Balanced policy debates produced No Child Left Behind and Race-to-the-Top
  • A balanced approach to educational technology made computer science extinct in schools and has now taught two generations of children to find the space bar in a computer lab-based keyboarding class.

I could go on.

Balance is elusive. It is fake and lazy and cowardly and sad. Balance is embraced by those who don’t know or can’t/won’t articulate what they truly believe. Balance fills the void left by the absence of alternative models and excellence. It is anonymous.

Educators are told that passion should be tempered. Every pedagogical idea is just fine as long as it is “for the children.” We should just do our jobs and not complain about outrageous attacks on our dignity, paycheck, curriculum, working conditions, or the living conditions of the students we serve.

Balance fills the school day with mandates and directives and lots of interruptions that while offering an illusion of options make it impossible for a learner to focus on anything long enough to become good at it.

Balance teaches children that teachers are helpless pawns in a system they don’t control or cannot understand.

Balance is the absentee parent of incrementalism. As educators take “baby steps” towards what they know is right or righteous they lead a long and meandering hike after which the followers cannot remember the original destination.

“This is no time to engage in the luxury of cooling off or to take the tranquilizing drug of gradualism.” (Martin Luther King, Jr., 1963)

Educators are to remain neutral and seek consensus at all-costs. Balance programs us to find the silver lining in tornados. There MUST be SOMETHING good in what Bill Gates or Sal Khan or any number of a million corporations with ED or MENTUM or ACHIEVE or VATION in their names happen to be peddling.

The laws of the political universe, and education is inherently political, greet each embrace of “balance” as ten steps in a more conservative direction. There is no balance – just weakness.

I urge you to read one of my favorite passages ever written about “balance” in education. It is from a lesser-known classic, On Being a Teacher,”  by the great American educator, Jonathan Kozol. Please take a few minutes to read, “Extreme Ideas.”


Thinking and learning are strong proud words. When educational publishers or policy-makers seek to modify such terms, (re: design thinking, discovery learning, computational thinking…), the result seems less than the individual parts.

We get “design thinking” without any design; “computational thinking” without computation; “discovery learning” where the only acceptable discoveries are the ones the teacher (or textbook) already anticipated.

Increases in agency or student empowerment remain rhetorical and pedagogical progress, illusory.

I am too often reminded of the Sir Joshua Reynolds quote hanging all over Thomas Edison’s laboratories, “There is no expedient to which a man will not resort to avoid the real labor of thinking.”

Piaget teaches us that “knowledge is a consequence of experience.” Schools and teachers serve students best when the emphasis is on action, not hypothetical conversations about what one might do if afforded the opportunity.

Papert was sadly correct when he said, “When ideas go to school, they lose their power.”

Let’s say that the lessons IDEO employees gleaned from designing the latest toothpaste tube could actually be applied to education (a preposterous supposition, but let’s roll with it). By the time those ideas move from the latest blog post or conference workshop to the classroom, kids are left with an elaborate process in which brainstorming and affixing Post-It notes to walls becomes a means to solving hypothetical problems or PowerPoint reports about a topic they care little about for a non-existent audience.

Actions taken by the system, like school or classroom redesign or schedule redesign may be fantastically beneficial, but are too often conflated with the benefits of learning by being designing something personally meaningful. In other words, the adults may have learned something by being designers, but are depriving youngsters of that same quality of experience. At a time when learning is too often viewed as the direct causal result of having been taught, system-level design becomes conflated with student learning. Arranging ceiling lights in the shape of constellations to reinforce the STEM focus of the school is hardly the same as students learning science by being scientists. Doing science leads to richer learning experiences and is profoundly different from being taught about it in a room with pictures of scientists on the wall or carpet tiles arranged in fractal patterns.

Image credit:

Image credit:

Teachers, and by extension students, become consumed by hitting all of the steps in the “design process” and remembering those stages at the expense of deeper experiences in creativity, design, engineering, or computing. I am alarmed by how many schools celebrate that they allow kids to choose a topic to write a report about (paper, blog post, or PowerPoint) and then confuse such coercive, traditional, and inauthentic experiences with remarkable feats of empowerment or school reform.

It is sad and dangerous to give folks the illusion of agency without actual power or meaningful options.