Ah, balance!

Balance is the Fabreze of education policy. It is a chemical spray designed to mask the stench of a two year-old tuna sandwich found in the minvan with the artificial bouquet of an April rain dancing on a lily pad.

  • Balanced literacy got us systemic phonics.
  • Balanced math begot Singapore Math worksheets.
  • Balanced standards produced The Common Core.
  • Balanced policy debates produced No Child Left Behind and Race-to-the-Top
  • A balanced approach to educational technology made computer science extinct in schools and has now taught two generations of children to find the space bar in a computer lab-based keyboarding class.

I could go on.

Balance is elusive. It is fake and lazy and cowardly and sad. Balance is embraced by those who don’t know or can’t/won’t articulate what they truly believe. Balance fills the void left by the absence of alternative models and excellence. It is anonymous.

Educators are told that passion should be tempered. Every pedagogical idea is just fine as long as it is “for the children.” We should just do our jobs and not complain about outrageous attacks on our dignity, paycheck, curriculum, working conditions, or the living conditions of the students we serve.

Balance fills the school day with mandates and directives and lots of interruptions that while offering an illusion of options make it impossible for a learner to focus on anything long enough to become good at it.

Balance teaches children that teachers are helpless pawns in a system they don’t control or cannot understand.

Balance is the absentee parent of incrementalism. As educators take “baby steps” towards what they know is right or righteous they lead a long and meandering hike after which the followers cannot remember the original destination.

“This is no time to engage in the luxury of cooling off or to take the tranquilizing drug of gradualism.” (Martin Luther King, Jr., 1963)

Educators are to remain neutral and seek consensus at all-costs. Balance programs us to find the silver lining in tornados. There MUST be SOMETHING good in what Bill Gates or Sal Khan or any number of a million corporations with ED or MENTUM or ACHIEVE or VATION in their names happen to be peddling.

The laws of the political universe, and education is inherently political, greet each embrace of “balance” as ten steps in a more conservative direction. There is no balance – just weakness.

I urge you to read one of my favorite passages ever written about “balance” in education. It is from a lesser-known classic, On Being a Teacher,”  by the great American educator, Jonathan Kozol. Please take a few minutes to read, “Extreme Ideas.”

balance

Thinking and learning are strong proud words. When educational publishers or policy-makers seek to modify such terms, (re: design thinking, discovery learning, computational thinking…), the result seems less than the individual parts.

We get “design thinking” without any design; “computational thinking” without computation; “discovery learning” where the only acceptable discoveries are the ones the teacher (or textbook) already anticipated.

Increases in agency or student empowerment remain rhetorical and pedagogical progress, illusory.

I am too often reminded of the Sir Joshua Reynolds quote hanging all over Thomas Edison’s laboratories, “There is no expedient to which a man will not resort to avoid the real labor of thinking.”

Piaget teaches us that “knowledge is a consequence of experience.” Schools and teachers serve students best when the emphasis is on action, not hypothetical conversations about what one might do if afforded the opportunity.

Papert was sadly correct when he said, “When ideas go to school, they lose their power.”

Let’s say that the lessons IDEO employees gleaned from designing the latest toothpaste tube could actually be applied to education (a preposterous supposition, but let’s roll with it). By the time those ideas move from the latest blog post or conference workshop to the classroom, kids are left with an elaborate process in which brainstorming and affixing Post-It notes to walls becomes a means to solving hypothetical problems or PowerPoint reports about a topic they care little about for a non-existent audience.

Actions taken by the system, like school or classroom redesign or schedule redesign may be fantastically beneficial, but are too often conflated with the benefits of learning by being designing something personally meaningful. In other words, the adults may have learned something by being designers, but are depriving youngsters of that same quality of experience. At a time when learning is too often viewed as the direct causal result of having been taught, system-level design becomes conflated with student learning. Arranging ceiling lights in the shape of constellations to reinforce the STEM focus of the school is hardly the same as students learning science by being scientists. Doing science leads to richer learning experiences and is profoundly different from being taught about it in a room with pictures of scientists on the wall or carpet tiles arranged in fractal patterns.

Image credit: https://flic.kr/p/cL9Gi

Image credit: https://flic.kr/p/cL9Gi

Teachers, and by extension students, become consumed by hitting all of the steps in the “design process” and remembering those stages at the expense of deeper experiences in creativity, design, engineering, or computing. I am alarmed by how many schools celebrate that they allow kids to choose a topic to write a report about (paper, blog post, or PowerPoint) and then confuse such coercive, traditional, and inauthentic experiences with remarkable feats of empowerment or school reform.

It is sad and dangerous to give folks the illusion of agency without actual power or meaningful options.

Tod Machover, me, Marvin Minsky

Tod Machover, me, Marvin Minsky at the MIT Media Lab 2013

I’m truly excited to be flying to Boston next week to participate in an amazing MIT event, “Deconstructing Beethoven’s Improvisations,” based on Marvin Minsky’s legendary paper, Music, Mind, and Meaning , and his love of Beethoven’s improvisations. A whole bunch of the world renowned pianists, musicologists, and scientists are on the 12+ hour program.

Some of you may not know that I studied music intensely through my mid-20s. I had four years of music theory in high school, studied music at Berklee College of Music, Rutgers, and William Paterson College, plus arranging with the great Frank Foster, Chico Mendoza, Andy Jaffe, and John Stubblefield. I “get” improvisation as an avid jazz fan who once aspired to be a professional jazz musician (before my considerable lack of talent caught up with me)

That said, my knowledge of Beethoven is infinitesimal and my music analysis skills are quite rusty. I’m really looking forward to burning up some brain cells at this event.

I’m busy downloading the pre-homework for the event and will be doing some serious cramming of the following materials suggested by the event organizers.

SUGGESTIONS FROM OUR PRESENTERS

Jonathan Biss

  • Listen: Beethoven Fantasy, op. 77, Serkin Recording – YouTube
  • Listen: Beethoven Fantasy, op. 77, Schnabel Recording – YouTube

“The Serkin and Schnabel recordings are both excellent. Probably as close to Beethoven’s actual improvisations as anything we have on paper.”

Robert Levin

Marvin Minsky

  • Read: “Music, Mind, and Meaning” – website version
  • Watch: Marvin with Hockenberry for the Media Lab h2.0 conference, 5 min – view or download video
  • Listen: Marvin Minsky BBC Radio interview about Beethoven’s 9th, 20 min – listen to MP3
  • Listen: Marvin Minsky,Nursery Rhyme Suite, 1960’s, recently digitized from reel-to-reel collection – download MP3

Stephen Prutsman

Listen: Shadows, by Stephen Prutsman, 9 min – listen to MP3

Frederic Rzewski

Listen: Hammerklavier Sonata – YouTube

Jan Swafford

Read: Ludwig Rules: A Guide for Studying Beethoven, by Jan Swafford – PDF

SUGGESTIONS FROM OUR HOSTS

Tod Machover

Jonathan Berger

  • Read: Composing Your Thoughts - web article
  • Read: Listener Correlation - PDF
  • “All deeply influenced and inspired by Marvin”
  • Listen:Visitations - website

A Not-So-Funny Thing Happened on the Way to the Future

© 2004 Gary S. Stager

Published by the NECC Daily Leader conference newspaper on June 22, 2004

The computer is not just an advanced calculator or camera or paintbrush; rather, it is a device that accelerates and extends our processes of thought. It is an imagination machine, which starts with the ideas we put into it and takes them farther than we ever could have taken them on our own.”  (Daniel Hillis, 1998)

This is an incredibly dark period for education. Perennial challenges are now accompanied by name-calling and public policy based on “getting tough” with third graders. Perhaps decision-makers just don’t know what learning in the digital age could look like. They need to see how kids not only learn old things in new ways, but construct personal understanding of powerful ideas in a rigorous computationally-rich fashion. Computers are today’s dominant intellectual laboratories and vehicles for self-expression.

Computers offer kids the means of production for learning via previously off-limit domains, including: music composition, filmmaking, robotics, computer science, journalism and engineering.

If only there were a place where compelling models of new educational practice could be shared… Welcome to NECC!

A few years ago, educators ceased talking about computing and started talking about technology. Suddenly computing, this remarkable invention of 20th century ingenuity, capable of transforming every intellectual domain, was dead without so much as an obituary. Conference speakers soon spoke of computers being just technology – like a zipper or Pez dispenser. This rhetorical shift liberated educators from learning to use computers, rethink the nature of curriculum or change practice to embrace the expansive opportunities afforded by computing. Information became the focus, not what kids do with computers.

In the mid-1970s my junior high required every 7th grader to learn to program a computer in nine weeks. The feelings of intellectual elation I experienced programming are indescribable. I didn’t know what was impossible so everything was possible. The computer amplified my thinking and the habits of mind I developed in Mr. Jones’ class serve me every day.

Bill Gates and Steve Wozniak enjoyed similar experiences. Imagine how the world would be different if some smart adults had not procured a mainframe and some terminals and said to Gates and Wozniak, “See what you can figure out. Have fun. Lock up when you’re done.”

How do your children’s school computing experiences compare? Do all students have access to creative tools anytime anyplace? Does the school culture inspire a thirst for knowledge and support authentic project-based work?

We’ve lowered standards when twelve year-olds in my junior high are NOW being taught to find the return key in a mandatory keyboarding class. Someday they may be “taught” to surf a filtered locked-down crippled Web incapable of downloading, rich media or collaboration all in the name of preparing them for the future. Some future.

Adults talk of how kids know so much about computers, how they are so competent, confident and fluent. Then those kids come to school and are treated like imbeciles or felons. Kid power is a gift to educators. We need to build upon those gifts and channel their students in directions they might not know exist. If kids came to school readers, we wouldn’t grunt phonemes at them. We would read better literature.

When many of us first attended NECC, we viewed the personal computer as not only a window on the future, but a microscope on the past. We knew how all sorts of learners exceed our wildest expectations when equipped with computers and constructionist software. Personal experience illuminated how the existing pencil-based curriculum was failing kids. Optimism filled the air.

Look around and you might conclude that the state-of-the-art includes: classrooms as game shows; data mining to justify standardized testing; reading as a winner-take-all race; and hysterical network security. “Technology” is being touted as a way to centralize control and breathe life into the least effective teaching practices of yore.

Widespread consensus is hard to achieve, especially on complex matters like education. Nonetheless, the educational computing community seems to have decided that our children should look forward to a future filled with testing and Microsoft Office instruction. Tests about Microsoft Office could achieve two national goals.

NECC attendees are pioneers entrusted with helping schools realize the potential of the imagination machine and as Gladwell suggests serve as the 10th Fleet in revolutionizing the context for learning. Go home and share the fabulous ideas you collect here in the Big Easy, but remember that the kids you serve expect big things from you and it won’t be easy.

In Australia…

Laptop Schools Lead the Way in Professional Development

As published in Educational Leadership – October 1995
By Gary S.Stager

Gary S. Stager is a teacher educator and adjunct professor at Pepperdine University. He has spent the past ten years working with a dozen Australian schools in which every student and teacher has a laptop computer.

Educational reform is too often equated with plugging students into anything that happens to plug in. Technology-rich Australian schools lead the way in helping teachers use technology thoughtfully.

Many educators believe that technology alone will lead to innovation and restructuring in schools. Unfortunately, they either do not include staff development in the equation, or they provide programs that do little more than ensure that teachers are able to unjam the printer or use one piece of canned instructional software.

Having developed a number of professional development models for a dozen schools in Australia and more in the United States, I believe computer-related staff development should immerse teachers in meaningful, educationally relevant projects. These activities should encourage teachers to reflect on powerful ideas and share their educational visions in order to create a culture of learning for their students. In brief, teachers must be able to connect their computer experience to constructive student use of computers.

Australian Leadership

In 1989, Methodist Ladies’ College, an independent pre-K-12 school with 2,400 students, embarked on an unparalleled learning adventure. At that time, the Melbourne school made a commitment to personal computing, LogoWriter, and constructivism. The governing principle was that all students, grades 5-12, should own a personal notebook computer on which they could work at school, at home, and across the curriculum. Ownership of the notebook computer would reinforce ownership of the knowledge constructed with it. Approximately 2,000 Methodist Ladies’ College students now have a personal notebook computer.

The school made personal computing part of its commitment to creating a nurturing learning culture. It ensured that teachers were supported in their own learning by catering to a wide range of learning styles, experiences, and interests. All involved agreed that personal computing was a powerful idea, one more important than the computers themselves. What students actually did with the computers was of paramount importance. LogoWriter was the schools’s primary software of choice. (MicroWorlds is now used.)

Dozens of Australian schools (called “laptop schools”) are now in various stages of following the lead of Methodist Ladies’ College in computing and are now using some of the professional development models created during my five years of work there.

Staff Development Innovations

Many schools find the task of getting a handful of teachers to use computers at even a superficial level daunting. The laptop schools expect their teachers not only to be comfortable with 30 notebook computers in their classroom, but also to participate actively in the reinvention of their school. In such progressive schools, staff development does not mean pouring information into teachers’ heads or training them in a few technical skills. Staff development means helping teachers fearlessly dream, explore, and invent new educational experiences for their students.

I have employed three staff development strategies – in-classroom collaboration, “slumber parties,” and build-a-book workshopsæin many laptop schools. All three model constructivism by providing meaningful contexts for learning, emphasizing collaborative problem solving and personal expression, and placing the learner (in this case the teacher) at the center of the learning experience. Each school values and respects the professionalism of the teachers by acknowledging the knowledge, skills, and experience each teacher possesses.

In-Classroom Collaboration

Several Australian laptop schools have used the in-classroom model I developed working in the Scarsdale, New York, and Wayne, New Jersey, public schools. This collaborative form of teacher development places the trainer in the teacher’s classroom to observe, evaluate, answer questions, and model imaginative ways in which the technology might be used. The collaborative spirit and enthusiasm engendered by the trainer motivates the teacher, who feels more comfortable taking risks when a colleague is there to help. Implementation is more viable because this professional development occurs on the teacher’s turf and during school hours.

Residential “Slumber Parties”

This approach allows teachers to leave the pressures of school and home behind for a few days to improve their computing skills in a carefully constructed environment designed to foster opportunities for peer collaboration, self-expression, and personal reflection, and to encourage a renewed enthusiasm for learning. These workshops have taken place at hotels, training centers, a monastery with lodging facilities, even at a school. These learner-centered workshops stress action, not rhetoric. The workshop leader serves as a catalyst, and creates opportunities for participants to connect personal reflections to their teaching. These connections are powerful when they come from the teacher’s own experienceæmuch like the types of learning opportunities we desire for students. The slumber parties use three key activities:

  1. Project brainstorming. Before we are even sure that the teachers know how to turn on their computers, we ask them to identify projects they wish to undertake during the workshop. The projects may be collaborative, personal, or curriculum-related, and they need not relate to the subjects they teach.
  2. Powerful ideas. Each day begins with a discussion of a relevant education issue or philosophical concern. Topics might include the history of Logo and your role in technological innovation (what the school has already accomplished); process approaches to learning; or personal learning stories. The topic for the final day, “What does this have to do with school?” is designed to help teachers reflect on their workshop experiences and make connections to their role as teachers.
  3. Problem solving off the deep end. One or two problem-solving activities are planned to demonstrate how teachers can solve complex open-ended problems through collaborative effort. These exercises help the participants to understand that not every problem has only one correct answer and that some problems may have no answers.

Slumber parties are offered on a regular basis. Because the primary goal of the workshops is to support a learning community, teachers and administrators are encouraged to participate in more than one. Participants gain appreciation for the power and expressive potential of LogoWriter. And, they are reminded that their colleagues are creative, imaginative learners like themselves.

Build-a-Book Residential Workshops

The origin for these workshops is based in the book, Build-a-Book Geometry. The book chronicles the author’s experience as a high school geometry teacher who spent an entire year encouraging his students to write their own geometry text through discovery, discussion, debate, and experimentation. It provides an exciting model for taking what teams of students know about a concept and then giving them challenges built upon their understanding or misunderstanding of it. The teacher then uses the responses to elicit a set of issues to which another team will respond, and so on. Throughout the process, each team keeps careful notes of hypotheses, processes, and conclusions, then shares these notes with the other teams during the process of writing the class book.

Healy’s ideas inspired a format that addresses confusing topics through discussion, problem solving, collaboration, and journal writing. Before the workshop, I ask each participant to identify three LogoWriter programming issues that they do not understand or that they need to have clarified. Small teams of teachers spend hours answering the questions and explaining numerous programming (and often mathematical) issues to one another. This exercise stresses the most important component of cooperative learningæinterdependence. When each group has answered all questions to its collective satisfaction, each teacher meets with a member of another team to explain what his or her group has accomplished.

Participants explore emerging questions through projectsædesigned by the leaderæthat are intended to use increasingly sophisticated skills. For example, teachers discuss the concept of programming elegance as they review student projects, and they keep careful notes of their programming processes, questions, and discoveries. These collective notes are included in the class book (disk). This disk becomes a valuable personal reference that the teachers can use in their own classrooms.

Teacher assessments of the residential workshops have been extremely positive. And, the quality of the experience makes the cost quite low when compared with the cost of providing an ongoing series of two-hour after-school workshops. Schools routinely spend much more time teaching concepts in bite-size chunks, while leaving real learning to chance.

Suggestions for Success

Following are some guidelines for successful technology implementation.

  • Work with the living.
    Because schools have limited technological and teacher development resources, those that do exist should be allocated prudently. If energy and resources are focused on creating a few successful models of classroom computing each year, the enthusiasm among teachers will be infectious. Of course, the selection of models must be broad enough to engage teachers of differing backgrounds and subject areas.
  • Eliminate obstacles.
    It should not be surprising that teachers without sufficient access to computer technology don’t embrace its use. How many workshops must a teacher attend to get a new printer ribbon? How long must a teacher wait to get enough lab time for his or her students to work on a meaningful project? The idea that schools should not buy computers before the teachers know what to do with them must be discarded.
  • Stay on message.
    Administrators must articulate a clear philosophy regarding how the new technology is to be used and how the culture of the school is likely to change. Communication between teachers and administrators must be honest, risk-free, and comfortable. Administrators must constantly clarify the curricular content and traditions the school values, as well as specify the outdated methodology and content that is to be eliminated. Teachers must be confident that their administrators will support them through the transitional periods.
  • Work on the teacher’s turf.
    Those responsible for staff development should be skilled in classroom implementation and should work alongside the teacher to create models of constructive computer use. It is important for teachers to see what students can do; this is difficult to accomplish in a brief workshop at the end of a long workday.
  • Plan off-site institutes.
    Schools must ensure that teachers understand the concepts of collaborative problem solving, cooperative learning, and constructivism. Accordingly, teachers must have the opportunity to leave behind the pressures of family and school for several days in order to experience the art of learning with their colleagues. Off-site residential “whole learning” workshops can have a profoundly positive effect on a large number of teachers in a short period of time.
  • Provide adequate resources.
    Nothing dooms the use of technology in the classroom more effectively than lack of support. Administrators can support teacher efforts by providing and maintaining the technology requested and by providing access to a working printer and a supply of blank disks.
  • Avoid software du jour.
    Many educators feel considerable pressure to constantly find something new to do with their computers. Unfortunately, this newness is equated with amassing more and more software. It is reckless and expensive to jump on every software bandwagon. The use of narrow, skill-specific software provides little benefit to students. Choose an open-ended environment, such as MicroWorlds, in which students can express themselves in many ways that may also converge with the curriculum.
  • Practice what you preach.
    Staff development experiences should be engaging, interdisciplinary, collaborative, heterogeneous, and models of constructivist learning.
  • Celebrate initiative.
    Recognize teachers who have made a demonstrated commitment to educational computing. Free them from some duties so they can assist colleagues in their classrooms; encourage them to lead workshops; and give them access to additional hardware.
  • Offer in-school sabbaticals.
    Provide innovative teachers with the in-school time and the resources necessary to develop curriculum and to conduct action research.
  • Share learning stories.
    Encourage teachers to reflect on significant personal learning experiences. Encourage them to share these experiences with their colleagues and to discuss the relationship between their own learning and their classroom practices. Formal action research projects and informal get-togethers are both effective. Teachers routinely relate that their most beneficial professional development experience is the opportunity to talk with peers.
  • Help teachers purchase technology.
    Schools should help fund 50-80 percent of a teacher’s purchase of a personal computer. This support demonstrates to teachers a shared commitment to educational progress. Partial funding gives teachers the flexibility to purchase the right computer configuration. Consider offering an annual stipend for upgrades and peripherals.
  • Cast a wide net.
    No one approach to staff development works for all teachers. Provide a combination of traditional workshops, in-classroom collaborations, mentoring, conferences, and whole-learning residential workshops from which teachers can choose.

Although many administrators dream of providing only a handful of computers in their schools, the reality of what is happening in schools across Australia requires serious consideration. Universal computing is in our future, and staff development programs must be geared to that fact. Modern staff development must help teachers not only embrace the technology, but also anticipate the classroom change that will accompany widespread use.

We must recognize that the only constant on which we can depend is the teacher. Our schools will only be as good as the least professional teacher. Staff development must enhance professionalism and empower teachers to improve the lives of their students. Our children deserve no less.

All of my friends know I have serious reservations about smarmy self-important libertarianism of TED and loathe speaking in the format – essentially a television program without any of the accoutrements of a television studio. That said, I’ve now performed three of them.

My first TEDx Talk made me ill for months before and weeks following the talk. The pressure was unbearable. You see, I wanted to go viral and become a millionaire – an overnight sensation like that guy who has taken such a courageous stance for creativity. The clock got me and I left half of my prepared thoughts on the cutting room floor. That said, people seem to like the talk anyway. For that I am grateful.

My first TED experience was so unpleasant that I sought an opportunity to try it again. This time, I promised myself that I would not stress out or over plan. That strategy paid off and the experience was a lot less traumatic. The only problem is that the venue audio was a disaster and I’m yelling through the entire talk. Don’t worry. I won’t be yelling when I publish a print anthology of these performances.

In March, I was invited by my longtime client, The American School of Bombay, to do another TEDx Talk. I assembled my vast team of advisors and brainstormed how I could turn this talk into riches beyond my wildest dreams. I quickly abandoned that idea and decided to use the occasion to honor my dear friend, mentor, and colleague, Dr. Seymour Papert in a talk I called, “Seymour Papert – Inventor of Everything*

I hope you enjoy it (or at least learn something before I lose another game of Beat the Clock)! Please share, tweet, reload the page 24/7! I have not yet given up on becoming an overnight sensation.

2014 – Seymour Papert – Inventor of Everything*

2013 – We Know What to Do

2011 – Reform™

 

I am always looking for ways to help teachers be more intentional and create deeper learning experiences for their students. Today, through the haze of Bombay Belly, I had an epiphany that may help you in similar learning situations.

Authentic project-based learning is in my humble opinion incompatible with curricular tricks like, Understanding by Design, where an adult determines what a children should know or do and then gives the illusion of freedom while kids strive to match the curriculum author’s expectation.

I view curriculum as the buoy, not the boat and find that a good idea is worth 1,000 benchmarks and standards.

Whether you agree with me or not, please consider my new strategy for encouraging richer classroom learning. I call it, “…and then?”

It goes something like this. Whenever a teacher asks a kid or group of kids to participate in some activity or engage in a project, ask, “..and then?” Try asking yourself, “..and then?” while you teach.

For example, when the kindergarten teacher has every child make a paper turkey or a cardboard clock, ask, “…and then?” This is like an improvisational game that encourages/requires teachers to extend the activity “that much” further.

You ask first graders to invent musical instrument. Rather than being content with the inventions, ask, “…and then?” You might then decide to:

  1. Ask each kid to compose a song to be played on their instrument
  2. Teach their song to a friend to play on their invented instrument
  3. The next day ask the kids to play the song they were taught yesterday from memory
  4. When they can’t remember how, you might ask each “composer” to write down the song so other players can remember it
  5. This leads to the invention of notational forms which can be compared and contrasted for efficacy or efficiency. This invention of notation leads to powerful ideas across multiple disciplines.

I think, “…and then?,” has application at any age and across any subject area.

Try it for yourself and let me know what you think!

Four out of five kindergarteners agree.

foam blocks 1 smaller
.
foam blocks 2 smaller

Foam blocks suck.

 

Candidly, I have not been enthusiastic about teaching “computational thinking” to kids. In nearly every case, computational thinking seemed to be a dodge intended to avoid computing, specifically computer programming.

“There is no expedient to which a man will not resort to avoid the real labor of thinking.”

(Sir Joshua Reynolds)

Programming is an incredibly powerful context for learning mathematics while engaged in being a mathematician. If mathematics is a way of making sense of the world, computing is a great way to make mathematics.

Most of the examples of computational thinking I’ve come across seemed like a cross between “Computer Appreciation” and “Math Appreciation.” However, since smart people were taking “computational thinking” more seriously, I spent a great deal of time thinking about a legitimate case for it in the education of young people.

Here it is…

Computational thinking is useful when modeling a system or complex problem is possible, but the programming is too difficult.

Examples will be shared in other venues.

“Young people have a remarkable capacity for intensity….”

Those words, uttered by one of America’s leading public intellectuals, Dr. Leon Botstein, President of Bard College, has driven my work for the past six or seven years. It is incumbent on every educator, parent, and citizen to build upon each kid’s capacity for intensity otherwise it manifests itself as boredom, misbehavior, ennui, or perhaps worst of all, wasted potential.

Schools need to raise the intensity level of their classrooms!

However, intensity is NOT the same as chaos. Schools don’t need any help with chaos. That they’ve cornered the market on.

capacity500
Anyone who has seen me speak is familiar with this photograph (above). It was taken around 1992 or 1993 at Glamorgan (now Toorak) the primary school campus of Geolong Grammar school in Melbourne, Australia. The kids were using their laptops to program in LogoWriter, a predecessor to MicroWorlds or Scratch.

I love this photo because in the time that elapsed between hitting the space bar and awaiting the result to appear on the screen, every ounce of the kid’s being was mobilized in anticipation of the result. He was literally shaking,

Moments after that image was captured, something occurred that has been repeated innumerable times ever since. Almost without exception, when a kid I’m teaching demonstrates a magnificent fireball of intensity, a teacher takes me aside to whisper some variation of, “that kid isn’t really good at school.”

No kidding? Could that possibly be due to an intensity mismatch between the eager clever child and her classroom?

I enjoy the great privilege of working in classrooms PK-12 all over the world on a regular basis. This allows me observe patterns, identify trends, and form hypotheses like the one about a mismatch in intensity. The purpose of my work in classrooms is to model for teachers what’s possible. When they see through the eyes, hands, and sometimes screens of their students, they may gain fresh perspectives on how things need not be as they seem.

Over four days last month, I taught more than 500 kids I never met before to program in Turtle Art and MicroWorlds EX. I enter each classroom conveying a message of, “I’m Gary. We’ve got stuff to do.” I greet each kid with an open heart and belief in their competence, unencumbered by their cumulative file, IEP, social status, or popularity. In every single instance, kids became lost in their work often for several times longer than a standard class period, without direct instruction, or a single  disciplinary incident. No shushing, yelling, time-outs, threats, rewards, or other behavioral management are needed. I have long maintained that classroom management techniques are only necessary if you feel compelled to manage a classroom.

In nearly every class I work with – anywhere, teachers take me aside to remark about how at least one kid shone brilliantly despite being a difficult or at-risk student. This no longer surprises me.

In one particular class, a kid quickly caught my eye due to his enthusiasm for programming. The kid took my two minute introduction to the programming language and set himself a challenge instantly. I then suggested a more complex variation. He followed with another idea before commandeering the computer on the teacher’s desk and connected to the projector in order to give an impromptu tutorial for classmates struggling with an elusive concept he observed while working on his own project. He was a fine teacher.

Then the fifth grader sat back down at his desk to continue his work. A colleague suggested that he write a program to draw concentric circles. A nifty bit of geometric and algebraic thinking followed. When I kicked things up a notch by writing my own even more complex program on the projected computer and named it, “Gary Defeats Derrick.” The kid laughed and read my program in an attempt to understand my use of global variables, conditionals, and iteration. Later in the day, the same kid chased me down the hall to tell me about what he had discovered since I left his classroom that morning.

Oh yeah, I later learned that the very same terrific kid is being drummed out of school  for not being their type of student.

I learned long ago. If a school does not have bad children, it will make them.