Leading family learning-by-making workshops in schools around the world is a pure joy. When parents can experience through the eyes, hands, and screens of their children what is possible, they demand a new more progressive educational diet from their school. I have now led three different family workshops at my favorite school in the world. The first one featured a wide range of materials, including: MakeyMakey, littleBits, LEGO WeDo, sewable circuitry, and Turtle Art. Twenty people RSVPd and more than one hundred showed up. The kids ranged in age from preschool to high school.

The next workshop was held the night before Halloween 2018. So, I selected a Halloween theme for our work with the Hummingbird Duo Robotics kits. A few minutes of introduction to the Hummingbird kit and the prompt, “Bring a Spooky ghost, goblin, or monster to life!” was all that was required for 60+ kids and parents to build and program in Snap! spooky creatures in less than ninety minutes.

Last week’s workshop was the best yet. An invitation for thirty grade 3-6 kids and parents to attend a family learning-by-making workshop sold out in no time flat.

Each of these workshops exemplified irrefutable evidence of the efficacy of constructionism and the limits of instruction. However, the most recent workshop possessed a special magic. Last week’s workshop was centered around the BBC micro:bit microcontroller development board. For $30 (Australian/$22 US), each kid would go home with the micro:bit Go kit they used during the workshop.

It is worth noting that while the hosting school has a long tradition of project-based learning and open education, it is not a high tech school and its facilities are not unlike many public primary schools. Furniture, room layout, and projector placement make instruction virtually impossible, even if I were prone to offer step-by-step tutelage, of which I am not. (Kids and parents were working in every nook and cranny of a library and in an adjacent classroom) Besides, the research project that is my work with teachers and students, leaves me convinced that instructionism, the notion that learning is the result of having been taught, is a fool’s errand. Piaget’s belief that “knowledge is a consequence of experience” is central to my work.

Parents brought their own laptops while other families used school laptops. The parents with personal laptops needed to use their phones for Internet access because stupid school Internet implementation doesn’t allow guest Web access. There were more than sixty workshop participants.

This is how the workshop began.


Hi. I’m Gary. This is the micro:bit. It has a 5X5 LED display that can be used to show pictures or display text. It also has two buttons that you can use to trigger actions. The micro:bit also has a temperature sensor, a light sensor, an accelerometer that knows if you move, tilt, or drop it, a compass, and ability to communicate between two or more micro:bits via radio. You can also connect LEDs, motors, buttons, or other sensors to the micro:bit via alligator clips, wire, or conductive thread  if you want to build robots or other cool stuff.

If you program in Scratch, the micro:bit can be used to control a video game you make by pressing the buttons or tilting the micro:bit like a steering wheel. You can even connect the micro:bit to a paper towel tube and make a magic wand to advance a story you program.

We will be using a Web-based programming environment, Microsoft MakeCode, tonight because it uses all of the hardware features of your micro:bit.

  • Go to MakeCode.com
  • Click on micro:bit
  • Click on New Project
  • Drag the Show Icon block from the Basic blocks into the Start block.
  • Select the heart shape
  • Now, we want to transfer the program we created to the micro:bit. The micro:bit works like a USB flash drive. Put a program on it and it runs until you put a new program there.
  • Click Download
  • Find the downloaded file you created, the one that ends in .hex in your downloads folder
  • Drag that file onto the microbic drive in your file explorer or Finder
  • Watch the yellow light on the micro:bit flash to indicate that the transfer is underway.

Voila! There’s a heart icon on your micro:bit!

  • Click on the Input blocks
  • Drag out an On Button blockChoose Button A
  • Make the program show you a Pacman icon when a user clicks the A button on the micro:bit
    Drag out another On Button block
  • Program the B button to Show String (some text you type as a message)
    Download your new program and copy it to the micro:bit

Heart displays

  • Click the A button and see Pacman. Click the B button and display your message!
  • Connect your battery box to the micro:bit and disconnect the micro:bit from the computer. Look!
  • The program runs as long as it has power!
  • Come get your micro:bit kit and a list of project ideas you might try.

90 minutes later, we needed to tell kids and parents to go home. (I am reasonably confident that I wrote more of my two minutes worth of instruction above than I actually said to the kids).

About 1/3 of the participants were girls and many boys were accompanied by mothers and grandmothers. There were plenty of Dads participating as well. Once one kid or family team made a breakthrough, I would signal that to other kids so they knew where to look or ask questions if they were struggling or curious.


Scenes from the workshop

Observations
Many teachers in workshop settings really struggle with the mechanics or concept of finding their downloaded file and clicking-dragging the file onto the micro:bit. Not a single child had any difficulty performing the process of copying a file from one drive to another. I have long been critical of the clumsy way in which MakeCode handles the process of downloading programs to the micro:bit and the way in which the Arduino IDE uploads programs to its board. The fact that upload and download are used arbitrarily is but one indicator of the unnecessarily tricky process. The fact that not one primary school student had such difficulty the first time they encountered physical computing makes me less anxious about the process.

Several kids were very clever and had working understanding of variables despite not having school experience with such concepts. This once again proves that when a teacher acts as a researcher. they discover that kids know stuff or harbor misconceptions . Such information allows for adjusting the learning environment, testing an intervention, or introducing a greater challenge. Some students had little difficulty constructing equations, despite the ham-fisted MakeCode interface. A few kids just wanted the micro:bit to perform calculations and display the result.

Conditionals proved equally logical to lots of the 8-12 year-olds. (It was interesting chatting with parent/student teams because it was often difficult to predict if you needed to engage in one or two conversations at the same time. A clever kid didn’t always mean that their parent understood what was going on or vice versa.)

There is much written about iterative design in education. Iterative design is swell for designing a new toothpaste tube based on customer interviews, brainstorming, pain points, etc. It is terrible for learning history or playing the cello. Iteration is about fixing something; making it right. I am much more excited about activities, such as computer programming in accessible languages, that lead to generative design. Show a kid a couple o blocks and they immediately have their own ideas about what to do next. The degree of difficulty of projects increase as kids experience success. If they are successful, they naturally find a new challenge, embellish their project, or test another hypothesis. If unsuccessful, debugging is necessary. Debugging is one of the most powerful ideas justifying computer use in education.

New prompt ideas emerged. While working with kids, I improvised the challenge to make a thermometer that showed a smiley face for warm temperatures and a sad face for colder temperatures. That was then substituted for a too difficult challenge in my list of suggested prompts.

When chips are cheap as chips, all sorts of new things are possible. You can leave projects assembled longer than a class period. You can use multiple micro:bits in one project. If you build something useful, you never have to take it apart. Giving every child the constructive technology to keep is a game changer! I will reconvene the students who attended the workshop next week to answer questions and see what they’ve been up to. Perhaps, this experience will lead to another article.

In less than the time of two traditional class periods (90 minutes), young children demonstrated a working understanding of computing concepts covering a breadth and depth of experiences many kids will not enjoy over twelve years of formal schooling. All of this was accomplished without coercion, assessment, sorting, worksheets, or more than a couple of minutes worth of instruction. A commitment to student agency and use of good open-ended constructive technology with extended play value allows a beautiful garden to bloom.

Resources


Veteran educator Dr. Gary Stager is co-author of Invent To Learn — Making, Tinkering, and Engineering in the Classroom and the founder of the Constructing Modern Knowledge summer institute. He led professional development in the world’s first 1:1 laptop schools and designed one of the oldest online graduate school programs. Learn more about Gary here.

Marvin Minsky & Gary Stager

One great joy of my life has been getting to know and work with so many of my heroes/sheroes. Even greater satisfaction comes from sharing those people with my fellow educators, via books, presentations, and the Constructing Modern Knowledge summer institute.

Over dinner thirty years ago, one of my mentors, Dan Watt dropped some wisdom on me when he said, “writing is hard.” Writing is hard. I find sitting down to write is even harder. The reward of writing is your work being read by others, especially when readers report thinking differently as a result. Even the “hate mail” I received as a magazine columnist and editor made the agony of writing worthwhile.

While proud of many things I have written, three pieces stand out as enormous honors. Being asked by the science journal of record, Nature, to author the obituary of my friend and mentor, Dr. Seymour Papert, was a difficult challenge and great privilege. Learning later that the great Alan Kay recommended me for the assignment took my breath away. I will remain forever grateful for his confidence in my ability to eulogize our mutual friend in such an august journal.

On two other occasions, I have been invited to contribute to books by my heroes. A few years ago, the prolific progressive author and educator, Herb Kohl, asked me to write a response piece to the great musician, David Amram, for the book, The Muses Go to School: Inspiring Stories About the Importance of Arts in Education. My fellow contributors include Bill T. Jones, Bill Ayers, Whoopi Goldberg, Deborah Meier, Diane Ravitch, Phillip Seymour Hoffman, Lisa Delpit, Maxine Greene, and others. Many readers may be unaware of my music studies and the fact that my career began as a public school arts advocate. Sharing anything, let alone a book, with the remarkable Herbert Kohl remains a source of enormous pride. This is an important book that should receive greater attention.

I first met Artificial intelligence pioneer, Marvin Minsky, in the late 1980s. I cannot say that I spent a great deal of time with him over the subsequent decades, but anyone who ever encountered Marvin can testify to the impact that I had on them, perhaps down to the molecular level. The fact that Marvin agreed to spend time leading a fireside chat with any interested educator at the first eight Constructing Modern Knowledge institutes continues to blow my mind. I will forever cherish his wit, wisdom, friendship, and generosity.

Inventive Minds: Marvin Minsky on Education is a brand new book based on essays by Dr. Marvin Minsky, one of the great scientists, inventors, and intellectuals of the past century. Our mutual friend, Dr. Cynthia Solomon, a hugely important figure in her own right, edited a text in which important essays by Minsky were assembled and responded to by an amazing collection of Marvin’s friends. One of Marvin’s proteges, Xiao Xiao, illustrated the book. The contributors to this book include:

  • Co-inventor of the Logo programming language, Cynthia Solomon
  • Father of the personal computer, Alan Kay
  • Legendary computer science professor, author, and pioneer of the Open Courseware movement, Hal Abelson
  • Former Director the MIT Media Laboratory, Walter Bender
  • Artificial intelligence pioneer and MIT professor, Patrick Henry Winston
  • Software engineer, inventor, and executive, Brian Silverman
  • Software engineer, Mike Travers
  • Haptics engineer and scientist, Margaret Minsky
  • Me

I can’t speak for my contribution, but am confident that Inventive Minds will stimulate a great deal of thought and dialogue among you and your colleagues. Buy the book and enjoy some great summer reading!


Veteran educator Dr. Gary Stager is co-author of Invent To Learn — Making, Tinkering, and Engineering in the Classroom and the founder of the Constructing Modern Knowledge summer institute. He led professional development in the world’s first 1:1 laptop schools and designed one of the oldest online graduate school programs. Learn more about Gary here.

In Chapter Four of our new book, Invent to Learn – Making, Tinkering, and Engineering in the Classroom, we discuss the importance of prompt setting as a basis for project-based learning. I argue that “a good prompt is worth 1,000 words.” Projects are not the occasional dessert you get as a reward after consuming a semester’s worth of asparagus, but that the project should be a teacher’s “smallest unit of concern.

Last week, Sylvia Martinez and I completed a successful four-city Texas Invent to Learn workshop tour. Each workshop featured an open-ended engineering challenge. This challenge, completed in under two hours, was designed not only to introduce making, engineering, tinkering, and programming to educators with diverse experience, but to model non-coercive, constructionist, project-based learning.

Presented with what we hope was a good prompt, great materials, “sufficient” time, and a supportive culture, including a range of expertise, the assembled educators would be able to invent and learn in ways that exceeded their expectations. (We used two of our favorite materials: the Hummingbird Bit Robotics Kit and Snap! programming language.)

A good time was had by all. Workshop participants created wondrous and whimsical inventions satisfying their interpretation of our prompt. In each workshop a great deal was accomplished and learned without any formal instruction or laborious design process.

What’s your point?
Earlier today, our friends at Birdbrain Technologies, manufacturers of the Hummingbird Bit Robotics Kit, tweeted one of the project videos from our Austin workshop. (Workshop participants often proudly share their creations on social media, not unlike kids. Such sharing causes me to invent new workshop prompts on a regular basis so that they remain a surprise in subsequent events.)

This lovely video was shared for all of the right reasons. It was viewed lots of times (and counting). Many educators liked or retweeted it, All good!

What’s slightly more problematic is the statement of the prompt inspiring this creation.

“Problem: The Easter Bunny is sick. Design a robot to deliver eggs.”

That was not the exact prompt presented to our workshop participants. This slight difference makes all the difference in the world.

The slide used to launch the invention process

Aren’t you just nitpicking?
Why quarrel over such subtle differences in wording?

  • Words matter
  • My prompt was an invitation to embark on a playful learning adventure complete with various sizes of candy eggs and a seasonal theme. Posing the activity as a problem/solution raises the stakes needlessly and implies assessment.
  • Design a robot comes with all sorts of baggage and limits the possible range of approaches. (I just rejected the word, solutions, and chose approaches because words matter.)

People have preconceived notions of robots (good and bad). Even if we are using a material called a robotics kit, I never want children to cloud their thinking with conventional images of robots.

The verb, design, is also problematic. It implies a front-loaded process involving formal planning, audience, pain point, etc… good in some problem solving contexts, but far from universally beneficial.

The use of problem, design, and robot needlessly narrows and constrains the affective, creative, and intellectual potential of the experience.

A major objective of professional learning activities such as these is for educators to experience what learning-by-doing may accomplish. Diving in, engaging in conversation with the materials, collaborating with others, and profiting from generative design (a topic for future writing) leads all learners to experience success, even in the short time allotted for this activity. Such a process respects what Papert and Turkle called epistemological pluralism. Hopefully, such positive personal experiences inspire future exploration, tinkering, and learning long after the workshop ends.

Our book suggests that good prompts are comprised of three factors:

  • Brevity
  • Ambiguity
  • Immunity to assessment

Such prompt-setting skill develops over time and with practice. Whether teaching preschoolers or adults, I am sensitive to planting the smallest seed possible to generate the most beautiful garden with the healthiest flowers. That glorious garden is free of litter from brainstorming Post-It Notes, imagination crushing rubrics, and other trappings of instruction.

References
Martinez, S. L., & Stager, G. (2019). Invent to learn: Making, Tinkering, and Engineering in the Classroom, second edition (2 ed.): Torrance, CA: Constructing Modern Knowledge Press

Turkle, S., & Papert, S. (1992). Epistemological Pluralism and the Revaluation of the Concrete. Journal of Mathematical Behavior, 11(1), 3-33.


Veteran educator Dr. Gary Stager is co-author of Invent To Learn — Making, Tinkering, and Engineering in the Classroom and the founder of the Constructing Modern Knowledge summer institute. He led professional development in the world’s first 1:1 laptop schools and designed one of the oldest online graduate school programs. Learn more about Gary here.

”cmk09″

Buy the book!

I’m thrilled to announce that our publishing company, Constructing Modern Knowledge Press, has released a new and expanded second edition of our book, Invent to Learn: Making, Tinkering, and Engineering in the Classroom. The new book is available in softcover, hardcover, and Kindle editions.

Co-author Sylvia Martinez and CMK Press Art Director Yvonne Martinez put the finishing touches on the new book

Sylvia Martinez and I are enormously proud of how Invent To Learn has inspired educators around the world since we published the first edition. Our decision to emphasize powerful ideas over technology ensured that very little of the book became dated. In fact, the first edition of  Invent to Learn continues to sell at the age of 129 (in tech book years) and is available or currently being translated into seven languages. The book is quite likely the most cited book about the maker movement and education in scholarship and conference proposals.

The new book takes a fresh shot at addressing the three game changers: digital fabrication, physical computing, and computer programming. We include sections on the BBC micro:bit, Hummingbird Robotics, littleBits, and new programming environments for learners. The new Invent to Learn also afforded us with an opportunity to reflect upon our work with educators around the world since the dawn of the maker movement in schools. There is an enormous collection of updated resources and a new introduction. Stay tuned for more online resources to be posted at the Invent To Learn web site.

In crass terms, the new edition of Invent to Learn: Making, Tinkering, and Engineering in the Classroom is 25% longer than the original. We even debugged some six year old typos.

I was shocked by how much time and effort was required to create the new edition of Invent to LearnThe second edition actually took longer to write than the original. I think we made a good book even better.

Spoiler Alert

According to Amazon.com, the most underlined passage in Invent to Learn is this.

“This book doesn’t just advocate for tinkering or making because it’s fun, although that would be sufficient. The central thesis is that children should engage in tinkering and making because they are powerful ways to learn.”

One of the greatest honors of my life was having our book reviewed by legendary educator and author of 40+ classic books, Herb Kohl, who wrote the following.

Invent to Learn is a persuasive, powerful, and useful reconceptualization of progressive education for digital times.” (full review)

So, that’s the secret. Invent to Learn: Making, Tinkering, and Engineering in the Classroom is really about making the world a better place for kids by helping educators construct a joyous, purposeful, creative, and empowering vision of education that prepares young people to triumph in an uncertain future.

I sure hope that y0u will read our new book and share this exciting news with your colleagues!

For decades, I have marveled at the vehemence with which seemingly reasonable adults defend not teaching kids to program computers. Aside from the typical (and often dubious) justifications popularized by politicians, Hour of Code, and the Computer Science for All community, I know how learning to program in the 7th grade was an intellectual awakening that has served me well for more than four decades.

So, when #1 Canadian, Dean Shareski, posed the following tweet, I decided to take “his” question seriously and offered to speak with him about the top online. Then another person I don’t know, Shana White, called in.

I hear some suggest everyone should learn to code. Ok. But should everyone learn basic woodworking? electrical work? cooking? plumbing? automotive? Those are all good things but is time part of the issue? How do all these good things get taught? Just thinking out loud.— Dean Shareski (@shareski) September 10, 2018

For what it’s worth, some of y0u might find the conversation interesting or just use it to lull yourself to sleep.

You may listen to or download the podcast here.

#basta


Veteran educator Dr. Gary Stager is co-author of Invent To Learn — Making, Tinkering, and Engineering in the Classroom and the founder of the Constructing Modern Knowledge summer institute. He led professional development in the world’s first 1:1 laptop schools and designed one of the oldest online graduate school programs. Learn more about Gary here.

Following speaking at the prestigious WISE Conference in Qatar (November 2017), Gary Stager delivered a keynote address on learning-by making at a conference held at The American University in Cairo. The video is finally available. Enjoy!


Veteran educator Dr. Gary Stager is co-author of Invent To Learn — Making, Tinkering, and Engineering in the Classroom and the founder of the Constructing Modern Knowledge summer institute. He led professional development in the world’s first 1:1 laptop schools and designed one of the oldest online graduate school programs. Learn more about Gary here.

In May 2018, Gary Stager sat down with Change.School founders, Bruce Dixon and Will Richardson for their Modern Learners Podcast, to discuss learning, teaching, school improvement, and a host of other provocative topics. The title of the podcast is “The Lost Art of Teaching with Gary Stager.”

You may listen to the conversation or download the audio podcast here or watch the Zoom video below.

I once heard former President Clinton say, “every problem in education has been solved somewhere.” Educators stand on the shoulders of giants and should be fluent in the literature of their chosen field.  We should be reading all of the time, but summer is definitely an opportunity to “catch-up.”

Regrettably too many “summer reading lists for educators” are better suited for those concerned with get-rich quick schemes than enriching the lives of children. Case-in-point, the President of the National Association of Independent Schools published “What to Read this Summer,” a list containing not a single book about teaching, learning, or even educational leadership. Over the past few years, I offered a canon for those interested in educational leadership.

When I suggested that everyone employed at my most recent school read at least one book over the summer, the principal suggested I provide options. Therefore, I chose a selection of books that would appeal to teachers of different grade levels and interests, but support and inspire the school’s desire to be more progressive, creative, child-centered, authentic, and project-based.

Gandini, Lella et al… (2015) In the Spirit of the Studio: Learning from the Atelier of Reggio Emilia, Second Edition.
Aimed at early childhood education, but equally applicable at any grade level.  Illustrates how to honor the “hundred languages of children.”
Little, Tom and Katherine Ellison. (2015) Loving Learning: How Progressive Education Can Save America’s Schools
A spectacular case made for progressive education in the face of the nonsense masquerading as school “reform” these days.
Littky, Dennis. (2004) The Big Picture: Education is Everyone’s Business.
Aimed at secondary education, but with powerful ideas applicable at any level. Students spend 40% each week in authentic internship settings and the remaining school time is focused on developing skills for the internship. This may be the best book written about high school reform in decades. 
Papert, Seymour. (1993) The Children’s Machine: Rethinking School in the Age of the Computer.
A seminal book that situates the maker movement and coding in a long progressive tradition. This is arguably the most important education book of the past quarter century.  Papert worked with Piaget, co-invented Logo, and is the major force behind educational computing, robotics, and the Maker Movement.
Perkins, David. (2010) Making Learning Whole: How Seven Principles of Teaching Can Transform Education.
A clear and concise book on how to teach in a learner-centered fashion by a leader at Harvard’s Project Zero. 
Tunstall, Tricia. (2013) Changing Lives: Gustavo Dudamel, El Sistema, and the Transformative Power of Music.
“One of the finest books about teaching and learning I’ve read in the past decade.” (Gary Stager) Tells the story of how hundreds of thousands of students in Venezuela are taught to play classical music at a high level. LA Philharmonic Conductor Gustavo Dudamel is a graduate of “El Sistema.” The lessons in this book are applicable across all subject areas. 

One additional recommendation…


Neil Gershenfeld, Alan Gershenfeld, Joel Cutcher-Gershenfeld (2017). Designing Reality: How to Survive and Thrive in the Third Digital Revolution.

In his groundbreaking books, When Things Start to Think and Fab, MIT Professor Neil Gershenfeld predicted the past quarter century of technological innovation and defined the basis for the modern maker movement. In this new volume, Gershenfeld collaborated with his social scientist and game designer brothers to help us all imagine the next fifty years of technological innovation and how it will change our world. 


Learn by making this summer; alone, with colleagues, or with your own children!

Check out the CMK Press collection of books on learning-by-making by educators for educators!

Is Howard Gardner the most misunderstood and misappropriated educationalist (his preferred term) in the world today or he just the only theorist most educators have heard of?

Today, two different pieces of reading started me thinking about Howard Gardner.

At first glance, the Beloglovsky and Daly book represents an impressive way of teaching learning theories to preservice and inservice educators. They identify a half dozen or so leading learning theorists, provide a brief description of their theories, and then through field examples, explore how those theories may be actualized in classroom practice. My initial thought was, “Why doesn’t anyone take a similar approach to educational psychology for elementary and secondary teachers?” Seriously!

It seems odd that the least paid and respected folks in education, early childhood teachers, seem to receive the richest exposure to learning theory. But, I digress.

Howard Gardner is one of the seminal theorists used in Early Learning Theories Made Visible and the author’s explanation and application of his multiple intelligences theory is a bit of a mess. (Discussions of multiple intelligences theory are often a confusing mess.) It seems as if the authors were so desperate to avoid wading into the fake controversy regarding “learning styles,” popular across social media and ed schools who hate children, that they initially just call the theory MI, assuming that all of their readers know what MI means. Then predictably, many of the examples of MI in the book are about pedagogy, not learning. In any event, the Early Learning Theories Made Visible is impressive and a worthy addition to your library, even if the first chapter could have benefited from a critical friend.

I highly recommend reading the new Harvard profile of Howard Gardner. Long-form interviews of thoughtful experts blessed with rich lives and professional success are always a great read.

One comment in that profile stood out for me.

“I’ve been able to write a lot. I wrote three books when I was in graduate school, which was very unusual. I’m more a book person than an article person.” (Howard Gardner)

Gardner’s thoughts on his written output made me think. Perhaps such prolific writing has obscured his ideas?

Gardner’s best ideas might be the ones reducible to a t-shirt slogan. For example, Multiple intelligences theory simply means that intelligence cannot be measured in one way.

Less might indeed be more.

Postscript

I highly recommend that everyone read an incredibly important and sadly overlooked anthology,”MI at 25: Assessing the Impact and Future of Multiple Intelligences for Teaching and Learning.” This book contains essays by experts making cogent thoughtful arguments for and against multiple intelligences theory.

References

Beloglovsky, M., & Daly, L. (2015). Early Learning Theories Made Visible: Redleaf Press.

Mineo, L. (2018). The Greatest Gift You Can Have is a Good Education, One that isn’t Strictly Professional. Experience.  Retrieved from https://news.harvard.edu/gazette/story/2018/05/harvard-scholar-howard-gardner-reflects-on-his-life-and-work/

Shearer, B. (2009). MI at 25: Assessing the impact and future of multiple intelligences for teaching and learning: Teachers College Press.


Veteran educator Dr. Gary Stager is co-author of Invent To Learn — Making, Tinkering, and Engineering in the Classroom and the founder of the Constructing Modern Knowledge summer institute. Learn more about Gary here.

Educators, citizens, and policy-makers would benefit from remembering two salient truths.

  • We stand on the shoulders of giants.
  • “Every problem in education has been solved somewhere.” (Bill Clinton)

For those reasons, I have finally finished curating a seminal collection of progressive education texts for an anthology entitled, “Dreams of Democratic Education: An Anthology for Educators Wishing to Stand Between Children and the Madness.” The eBook contains full texts by Ferrer, Dewey, Patri, The School of Barbiana, Malaguzzi, Papert, Lakoff, and a guy named Stager. (The sources are admittedly by male authors, but I was constrained by the materials available in the public domain. In a perfect world, Lillian Weber, Deborah Meier, and others would be included.)

This 785 page eBook (in PDF format) is now available for free download via this web page.

We hope to be able to help organize book clubs, discussions, and courses built upon the eBook’s contents in the future.

Several of the books included in the eBook anthology are available from Amazon.com via this link.


Veteran educator Dr. Gary Stager is co-author of Invent To Learn — Making, Tinkering, and Engineering in the Classroom and the founder of the Constructing Modern Knowledge summer institute. Learn more about Gary here.