Bob Tinker at CMK 2008

The world lost a remarkable educator on June 22, 2017 when Dr. Robert Tinker passed away at the age of 75.

If your students have ever worked on a collaborative online project, taken a virtual class, used a science probe, played The Zoombinis, or used any terrific materials created by TERC or The Concord Consortium, Bob is the reason why.

A gifted scientist, Bob was brilliant, kind, patient, joyous, and generous. Like our mutual friend, Seymour Papert, Bob spent his life helping others to learn and love science and math just as much as he did. He possessed the rare empathy that allowed him to wonder why others might not learn this or that as naturally or easily as he did. Rather than blame or shame learners, Bob designed tools not to teach, but for learning. At Seymour Papert’s memorial celebration, Tod Machover quoted Papert as saying, “Everyone needs a prosthetic.” Bob Tinker was in the business of creating remarkable prosthetics useful for embracing the wonders of scientific inquiry.

I just learned that Bob fought on the front lines of the civil rights movement in Alabama, just as Papert did in South Africa. This news came as no surprise.

“My Dad was the probably the smartest man I knew (MIT PhD), and he decided to pass on earning a big salary with a Defense Contractor in order to positively impact change. With my mom at his side, during the civil rights movement they moved to the South to teach at a University that could hardly afford textbooks. They marched in dangerous areas. They worked to expose climate change. They personally funded the arts and those less fortunate. They then built the two largest science/match educational non-profits in the USA. The two NGOs employ hundreds, have trained thousands of teachers, and have educated millions of kids.” (Bob’s daughter, Facebook, June 22)

A life well lived… Online, Bob’s friends remember him as a mensch.

Long before politicians and hucksters began alarming the citizenry about the need to teach Science, Technology, Engineering, and Mathematics (S.T.E.M.) subjects as a vulgar ticket to careers, real or imagined, Bob Tinker created tools and technology that not only raised the standards for student participation in those fields, but did so in a progressive constructivist context. Not only didn’t his approach to S.T.E.M. exceed empty rhetoric and vocabulary acquisition, Bob’s work brought a broad spectrum of modern scientific domains to life in classrooms. Biology, chemistry, physics, computer science, earth science, electronics, engineering, and computational thinking were all in the mix.

Dr. Tinker delighting in a teacher’s scientific discovery

One could make a compelling argument that Bob Tinker is the father of S.T.E.M. However, I think of him as the Thomas Edison of S.T.E.M. Beyond his remarkable academic preparation, Bob was not resigned to a life of writing pretentious papers to be published in overpriced conference proceedings read by six colleagues. While there was nobody better at writing successful grant proposals, Bob and his colleagues had a stunning track record of “commercializing” their ideas. At both TERC, where he was Director of Educational Technology and The Concord Consortium he founded, Bob Tinker personified Edison’s notion of research AND development. An idea could be tested, refined, manufactured, and distributed in a reasonable timeframe. Unlike so many researchers cloistered in university departments and think tanks, Bob and his colleagues turned ideas into actual products enjoyed by millions of students around the world. Like Edison, Dr. Tinker didn’t work alone. He assembled and led an incredibly competent band of “muckers” who could bring impossible ideas to life.

Those products were sound, timely, reliable, open-ended, fun and teachable without succumbing to “teacher proofing” or dumbing down the science. There was never anything condescending about Dr. Tinker’s prolific work. Bob’s considerable charm and passion undoubtedly played a role in the creation of public/private partnerships, including with The National Geographic and Broderbund, required to successfully distribute his inventions to classrooms and homes everywhere. Bob was also a pioneer in making powerful software tools freely available online. He also preceded the DIY ethos of the maker movement by advocating for the creation of one’s own science probes in 2007!

In Bob’s world, there was no reason to add an A for Arts to S.T.E.M., since the doing of science and mathematics was itself, beautiful, wondrous, playful, creative, and relevant. Papert and Tinker shared a desire for children to be mathematicians and scientists, rather than being taught math or science. They both worked to make complexity possible by making the frontiers of mathematics and science accessible and usable by children. Bob went a step further and created programs where students could collaborate with scientists online as colleagues back in 1989, two years before the World Wide Web was released to the public. My fourth grade class participated in the National Geographic Kids Network Acid Rain project back in 1990.

In an interview Bob said:

“I became inspired to teach by tutoring two kids for two years in a black college in the South. It was the best education (for me!) anyone could design because it showed me exactly how science education could reach far more learners. I’ve dedicated my life to realizing that dream and it’s been wonderful working with smart people who share that dedication. There’s always been a sense of mission. We make important advances that will affect kids all over the world and—this was my initial motivation—bring cutting-edge educational resources to under-resourced kids.”

On a personal note

I do not remember exactly when I first met Bob Tinker, but it was at a conference approximately thirty years ago. Back then, the smartest people in the world spoke at educational computing conferences. I was familiar with his work prior to meeting him. In fact, I was a big fan of The Science Toolkit, distributed by home recreational software publisher, Broderbund. The Science Toolkit was a low-cost ($79 master module with two probes and $39 add-on sets) software package with external sensors that plugged into the joystick port of a microcomputer to allow children to conduct, measure, and record science experiments at home. This was an example of what Bob pioneered and called Micro-Based Labs (MBL).

Check out the video clip from the Christmas 1983 episode of the PBS show Computer Chronicles. Note how clean and simple the software it is and compare it some of the probeware software sold to schools today.

Prior to meeting Bob, I owned my own Science Toolkit. I was especially pleased with myself for figuring out how to program LogoWriter to read data from the kit’s probes without using the accompanying software. I could now write my own programs for collecting data, graphing it, and controlling my own experiments. I nailed using the light sensor, but my temperature data I received wasn’t particularly accurate. I eventually rationalized this as being the fault of the sensor or based on the limitations of the Science Toolkit, despite the fact that the probe worked just fine with the software provided. 

Not much time passed before I ran into Bob Tinker in one of those “V.I.P.” receptions, in the crummy “suite” of the conference chair in the forgettable hotel where the conference was being held. As I told Bob about my struggles with temperature data, he grabbed a napkin and wrote calculus formulas across all of the quadrants of the unfolded napkin. Bob mentioned that reading the temperature data was non-linear, a concept this C- science student could vaguely comprehend. While I never figured out how to translate the napkin math to a working LogoWriter program, Bob’s good cheer, gentle mentoring, and generosity reminded meow something I wrote in an essay a couple of years ago, “Math teachers often made me feel stupid; mathematicians never did.”

Maria Knee & Bob Tinker at CMK 2008

When I started the Constructing Modern Knowledge institute for educators ten years ago, Bob was the first speaker I secured. He had agreed  to return in a few weeks to help us celebrate our 10th anniversary this July.

I will never forget the joy he brought to kindergarten teacher extraordinaire, Maria Knee, who was euphoric while manipulating molecules in software Bob created (The Molecular Workbench). He and his colleagues made the impossible accessible to generations of teachers and children.

I am gutted by Bob’s passing. Losing Bob, Seymour Papert, Marvin Minsky, and Edith Ackermann within an 18-month period is almost too painful to bear. They were fountains of powerful ideas extinguished in anti-intellectual age hostile to science, even wonder. The education community does not enjoy a proud record of honoring the contributions of its pioneers or standing on their shoulders. Instead we continuously rediscover that which already exists, without attribution and with diminished expectations.

More than twenty-five years ago, Seymour Papert and Bob Tinker led a crazy or courageous session at the National Educational Computing Conference in Boston. If memory serves me, the presentation had a title along the lines of “Enemies of Constructionism.” I remember them taking turns placing acetates on the overhead projector proclaiming the name and photo of one of their enemies, including their NSF project manager who happened to be in the audience. This session had to be Seymour’s idea because Bob was too nice, but I suspect that Bob wrote the proposal.

I considered Bob a friend and dear colleague, even though we never really hung out or worked together formally. We often discussed collaborating on an elementary school project of some sort even though Bob modestly claimed not to know anything about little kids. Less than a year ago, Bob introduced me to a colleague and recommended that I be an advisor for an NSF proposal. I was honored to be asked and the grant* has been funded. While searching my email database, I found another proposal Bob himself included me in eleven years ago. I am humbled by his faith in me and respect for my work.

I wonder if ISTE will honor Bob in any way or if they even know who he is? I still await even a tweet about the passing of Dr. Papert. Like Papert, Bob Tinker was never invited to be a keynote speaker at ISTE or its predecessor, NECC.

Rest-in-power Bob. We will miss you forever and the struggle against ignorance continues!


Seminal articles by Robert Tinker, Ph.D.

Read more by searching for Tinker.

The Concord Consortium is assembling a collection of tributes to Bob Tinker here.

Read Bob Tinker’s Wikipedia page.

Notes

* Read the text of the funded NSF proposal, Science and Engineering Education for Infrastructure Transformation.

 

I recently published my 2017 summer reading suggestions for educators, but here is an equally radical list from 2002! See my 2006 recommendations too.

School’s almost out, and it’s the perfect time to get in some interesting reading that will reinvigorate you for September

From the June 2002 issue of District Administration

One of the best ways to spend the summer is curled up with a good book. The following are nominees for books that will inspire, provoke or entertain educators. Professional development for you and your staff is only a bookstore away. Why not stay connected with your colleagues this summer by starting a book club? You can find all of these books and more here.

Summer Reading
The Book of Learning and Forgetting by Frank Smith
This may well be the most beautiful, clear and pro-found book ever written about learning and overcoming the obstacles to learning created by schools. Smith paints a gorgeous picture of what real learning is and explains how it differs from what he calls the official theory of learning.

Ordinary Resurrections: Children in the Years of Hope by Jonathan Kozol
Jonathan Kozol’s latest book about the lives and education of poor kids will touch your heart. One of my all-time favorite books.

What Happened to Recess and Why Are Our Children Struggling in Kindergarten? by Susan Ohanian
I adore every book written by this master teacher, humorist and educational critic. Her most recent book explores the human cost of our current testing-mania, shares teaching anecdotes and discusses what parents are doing to make schools more playful places to learn.

American Psychology and Schools: A Critique by Seymour Sarason
Prolific author, educator and psychologist Sarason candidly investigates the question, “Where has the American psychological community been during the heightened concern over standardized testing and school violence?” He offers hypotheses for this disinterest in schools and explores the damage to the public welfare caused by the collective silence of the psychological community.

Leadership
The Inner Principal by David Loader
Veteran principal David Loader courageously explores the joys, challenges and inner conflicts of being a school principal. His accomplishments on behalf of kids will inspire school leaders. Teachers will give their principals a hug.

Slack: Getting Past Burnout, Busywork, and the Myth of Total Efficiency by Tom Demarco
The latest book by this management guru argues that effective organizations need slack to nurture out-of-the-box thinking and productivity, particularly among knowledge workers.

One for Each Level
The following books are designed to appeal to elementary, middle school and high school teachers.

The Hundred Languages of Children: The Reggio Emilia Approach Advanced Reflections by Edwards, Gandini and Forman (Editors)
This remarkable book should be read and re-read by every educator. It seems to contain solutions to every educational problem. While the city of Reggio Emilia focuses on early childhood education, there are numerous lessons to be learned by teachers at all levels.

Caught in the Middle—Nonstandard Kids and the Killing Curriculum by Susan Ohanian
Ohanian makes the case for a learner-centered approach to the middle grades from her amusing perspective.

Rethinking High School: Best Practice in Teaching by Daniels, Bizar and Zemelman
A six-year case study of the planning through graduation of a new Chicago school committed to preparing students for the 21st century.

Technology
Internet & Computer Ethics for Kids: (and Parents & Teachers Who Haven’t Got a Clue) by Winn Schwartau
This book explores a large quantity of ethical issues facing citizens in the digital age. While written for adolescents, adults will find the description of ethical dilemmas, the law and common sense useful in making sense of this confusing era.

The following opinion column from the October issue of District Administration Magazine caused the owner (and Editor-in-Chief) of the magazine to publish an apology in the very next issue. The mea culpa was published before any reader or advertiser complained. None did. This column never appeared on the magazine’s web site, so it is published here.

In August 2004, District Administration Magazine published my harsh critique of Senator John Kerry’s education plan. It may be read here.

In other words, the following fact-checked article was deemed unfair when an article critical of the political opponent two months earlier was fair game.

I remain incredibly proud of this article because it was timely, witty, and predicted the ultimate disaster caused by the policies I criticized.

Gary Stager on Direct Instruction

Perhaps it’s time to end political social promotion
From the October 2004 issue of District Administration Magazine

Michael Moore got it wrong.

In his film, Fahrenheit 9/11Moore shows President Bush in a Florida classroom on the morning of Sept. 11, 2001. The film’s narration said that while America was being attacked, the president read the book, My Pet Goat, to a room full of young children. This is factually inaccurate in three important ways.

  1. The story is actually titled, The Pet Goat.
  2. It is not a book, but an exercise in a heavily scripted basal.
  3. The president did not read the story to the children.

Any perceptive educator watching this would quickly realize what was going on. The president was not in that classroom to demonstrate his love of reading. Being read to is a powerful literacy experience. Having a wonderful story read to you by the president of the United States could create a memory to last a lifetime.

Unlike his wife, mother and Oval Office predecessors, this president had a more important agenda than demonstrating affection for children or for reading. The trip was part of a calculated campaign to sell No Child Left Behind. In what Michael Moore rightly observed as a photo opportunity, young children were used as props to advance the administration’s radical attack on public education.

The Pet Goat is an exercise from a literary classic called, Reading Mastery 2, by the father of Direct Instruction, Siegfried (Zig) Engelmann. In the 1960s, Engelmann invented a controversial pedagogical approach that reduces knowledge to bite-]sized chunks presented in a prescribed sequence enforced by a scripted lesson the teacher is to recite to a classroom of pupils chanting predetermined responses. Every single word the teacher is to utter, including permissible and prohibited words of encouragement, are provided. There is no room for individuality. The Direct Instruction Web site states, “The popular valuing of teacher creativity and autonomy as high priorities must give way to a willingness to follow certain carefully prescribed instructional practices.”

Engelmann told The New Yorker in its July 26, 2004 issue, “We don’t give a damn what the teacher thinks, what the teacher feels. On the teachers’ own time they can hate it. We don’t care, as long as they do it. Traditionalists die over this, but in terms of data we whump the daylights out of them.” It is easy to see how a man of such sensitive temperament could author more than 1,000 literary masterpieces such as The Pet Goat.

While I am sure the Florida school visited is a fine one and the classroom teacher loves children, educational excellence was not being celebrated. This was a party on behalf of Direct Instruction. While Moore made a documentary [some suggest artful propaganda] about the Iraq war, he could have made a movie about the United States government’s ideological attack on the public schools.

The War on Public Education
Engelmann’s publisher is a textbook giant with ties to the Bush family dating back to the 1930s. Company namesakes served on George W. Bush’s transition team and the board of his mother’s literacy foundation. The publishers have received honors from two Bush administrations and they in turn have bestowed awards on Secretary Rod Paige, who then keynoted their business conference. The same company’s former executive vice president is the new U.S. Ambassador to Iraq. Direct instruction has become synonymous with the “scientifically based methods” required by No Child Left Behind.

The War on Public Education has ratcheted up parental fear with cleverly designed rhetoric of failing schools, data disaggregation, underperforming students, unqualified teachers and clever slogans like, “no excuses.” If you turn public schools, even the best ones, into single-]minded test-]prep factories where teachers drone on from scripted lessons then more people will want that magical voucher. Repeatedly demonize teachers arid the public will lose confidence regardless of their personal experiences with their local school.

So, how are you doing? Is your job now more about compliance than kids? Are sound educational experiences being sacrificed for test­ preparation? Has fear replaced joy in your classrooms? President Reagan might suggest we ask ourselves, “Is your school better off than it was four years ago?”

 Raise test Scores – win a prize

I was horrified by recent news referring to U.S. Sen. John Kerry’s education platform. The newsflash reported that if elected president, Kerry would reward teachers for increased student achievement. The news media may have over-simplified a more comprehensive policy statement or the Kerry campaign may have distributed this bumper sticker slogan for its own purposes. Either hypothesis is plausible since there is so little thoughtful discourse on the status or future of public education.

In his book, Political Leadership and Educational Failure, Seymour Sarason reminds us that although we expect that our elected officials will be briefed by the best and brightest experts when concerned with issues of taxation, highway resurfacing or sewage, no such expectation exists for discussions of education policy. Members of both parties seem to increase in ignorance proportionate to their proximity to schooling decisions. After all, U.S. Sen. Ted Kennedy cosponsored No Child Left Behind.

Taken at face value, reports of the Kerry proposal could suggest either a generous desire to increase teacher pay or a cynical scheme to pander to the electorate. While I’m supportive of dramatic increases in teacher compensation, merit pay is a mischievous idea that continues to plague public education.

Is the key to educational quality a tip jar for teachers?

In a Harvard Business Review article, Alfie Kohn states, “… at least two dozen studies over the last three decades have conclusively shown that people who expect to receive a reward for completing a task … simply do not perform as well as those who expect no reward at all. … Incentives [or bribes] simply can’t work in the workplace.” You don’t have to agree with fuzzy teacher lovers like Kohn. The week of the Kerry announcement I read articles in Business Week and Business 2.0 stating unequivocally that incentive pay does not work in the workplace. W. Edward Demings opposes the destructive effects of merit pay as do Peopleware authors Lister and DeMarco. They detail how extrinsic rewards and performance reviews contribute to teamicide, the unintentional destruction of well-jelled teams. Most people believe they do the best job possible and reviews that merely reflect this fact lead to disappointment, lower morale and drive a wedge between colleagues. Even seemingly innocuous schemes like “employee of the month” do little to motivate excellent employees, but can increase resentment.

Countless psychologists have demonstrated how extrinsic rewards are unsustainable since the bribe must be continuously increased in order to maintain the same level of performance.

Making Enemies

Perhaps teachers are different. Could it be that they are more mercenary than Enron employees or waiters jockeying for tips? If it doesn’t work in industry, why is it constantly touted asthe cure for all educational ills? Merit pay is a ridiculous idea for improving teacher quality for a number of reasons. Let me share a few:

Teachers are not in it for the money. Remuneration is low on the list of reasons why people become and remain educators. While all teachers would prefer to earn more money, it is not a high priority.

Merit pay shifts all responsibility to teachers. Teachers would like to be treated more professionally and have their judgment trusted. Merit pay denies teachers autonomy through a top-down manipulation, yet holds them responsible for student performance.

Student performance is based on multiple factors. A good teacher can make a huge impact on the life and development of a student. However, human development is complex and learning is not merely the result of being taught.

Merit pay makes students the enemy. Linking teacher pay to test score increases invariably leads to teacher resentment of the very kids they are employed to serve.

Will Teach for Bonuses

The message implicit in political demands for pay linked to accountability is that teachers are failing to assist students until they get an extra food pellet. Demonizing teachers is so much easier than assuming responsibility for meaningful education policy.

According to his campaign Web site, Senator Kerry appears to offer a more comprehensive, less punitive vision for public education. Regardless of this November’s election results, I hope public policy will lead a serious national effort to benefit children without scapegoating teachers.

Gary Stager, gary@stager.org, is editorat- large and an adjunct professor at Pepperdine University.

This June’s ISTE Conference will be my thirtieth ISTE (formerly NECC) conferences as a speaker. I suspect that I have been part of 60-80 presentations at this conference over that period – a record few if any can match. I was also part of the keynote session at NECC 2009. (watch it here)

This year’s accepted presentations are an eclectic mix. I will be sharing the stage with Sylvia Martinez about making and maker spaces. My personal sessions reflect two of my passions and areas of expertise; using technology in the context of the Reggio Emilia Approach and Logo programming.

The Reggio Emilia Approach emerges from the municipal infant/toddler centers and preschools of the Italian city, Reggio Emilia. These schools, often referred to as the best schools in the world, are a complex mix of democracy, creativity, subtlety, attention to detail, knowledge construction, and profound respect for children. There are many lessons to be learned for teaching any subject at any grade level and for using technology in this remarkable spirit. Constructing Modern Knowledge has done much to bring the Reggio Emilia Approach to edtech enthusiasts over the past decade.

I began teaching Logo programming to kids and teachers 35 years ago and even edited the ISTE journal, Logo Exchange (killed by ISTE). There is still no better way to introduce modern powerful ideas than through Logo programming. I delight in watching teachers twist their bodies around, high-fiving the air, and completely losing themselves in the microword of the turtle. During my session, I will discuss the precedents for Logo, demonstrate seminal programming activities, explore current dialects of the language, celebrate Logo’s contributions to education and the computer industry, ponder Logo’s future, and mourn the recent passing of Logo’s father, Dr. Seymour Papert.

Without Logo there might be no maker movement, classroom robotics, CS4All, Scratch, or even software site licenses.

So, what do making, Logo, and the Reggio Emilia approach have in common? Effective maker spaces have a lot to learn about preparing a productive context for learning from the educators of Reggio Emilia. Papert and the Reggio community enjoyed a longstanding mutual admiration while sharing Dewey, Piaget, and Vygotsky at their philosophical roots. Logo was used in Reggio Emilia classrooms as discussed in a recent translation of a book featuring teachers discussing student projects as a window into their thinking with Loris Malaguzzi, the father of the Reggio Emilia approach. One of the chapters in Loris Malaguzzi and the Teachers: Dialogues on Collaboration and Conflict among Children, Reggio Emilia 1990 explores students learning with Logo.

Gary Stager’s ISTE 2017 Presentation Calendar

Before You Build a Makerspace: Four Aspects to Consider [panel with Sylvia Martinez]

  • Tuesday, June 27, 1:45–2:45 pm CDT
  • Building/Room: 302A

Logo at 50: Children, Computers and Powerful Ideas

  • Tuesday, June 27, 4:45–5:45 pm CDT
  • Building/Room: Hemisfair Ballroom 2

Logo, the first computer programming language for kids, was invented in 1967 and is still in use around the world today. This session will discuss the Piagetian roots of Logo, critical aspects of its design and versions today. Anyone interested in CS4All has a lot to learn from Logo.

Logo and the fifty years of research demonstrating its efficacy in a remarkable number of classrooms and contexts around the world predate the ISTE standards and exceed their expectations. The recent President of the United States advocated CS4All while the standards listed above fail to explicitly address computer programming. Logo catalyzed a commitment to social justice and educational change and introduced many educators to powerful ideas from artificial intelligence, cognitive science, and progressive education.

Learning From the Maker Movement in a Reggio Context

  • Wednesday, June 28, 8:30–9:30 am CDT
  • Building/Room: 220

Discover how the Reggio Emilia Approach that is rooted in a half-century of work with Italian preschoolers and includes profound, subtle and complex lessons from intensely learner-centered classrooms, is applicable to all educational settings. Learn what “Reggio” teaches us about learning-by-making, making learning visible, aesthetics and PBL.

Direct interview requests to gary [at] stager.org


Gary Stager is the founder of the Constructing Modern Knowledge summer institute for educators July 11-14, 2017, coauthor of Invent To Learn – Making, Tinkering, and Engineering in the Classroom, and curator of the Seymour Papert archive site, DailyPapert.com. Register today for Constructing Modern Knowledge 2017!

I once heard former President Clinton say, “every problem in education has been solved somewhere.” Educators stand on the shoulders of giants and should be fluent in the literature of their chosen field.  We should be reading all of the time, but summer is definitely an opportunity to “catch-up.”

Regrettably too many “summer reading lists for educators” are better suited for those concerned with get-rich quick schemes than enriching the lives of children. Case-in-point, the President of the National Association of Independent Schools published “What to Read this Summer,” a list containing not a single book about teaching, learning, or even educational leadership. Over the past few years, I offered a canon for those interested in educational leadership and a large collection of suggested books for creative educators and parents.

When I suggested that everyone employed at my most recent school read at least one book over the summer, the principal suggested I provide options. Therefore, I chose a selection of books that would appeal to teachers of different grade levels and interests, but support and inspire the school’s desire to be more progressive, creative, child-centered, authentic, and project-based.

Gandini, Lella et al… (2015) In the Spirit of the Studio: Learning from the Atelier of Reggio Emilia, Second Edition.
Aimed at early childhood education, but equally applicable at any grade level.  Illustrates how to honor the “hundred languages of children.”

 

 

 


Little, Tom and Katherine Ellison. (2015) Loving Learning: How Progressive Education Can Save America’s Schools
A spectacular case made for progressive education in the face of the nonsense masquerading as school “reform” these days.

 

 

 


Littky, Dennis. (2004) The Big Picture: Education is Everyone’s Business.
Aimed at secondary education, but with powerful ideas applicable at any level. Students spend 40% each week in authentic internship settings and the remaining school time is focused on developing skills for the internship. This may be the best book written about high school reform in decades. 


Papert, Seymour. (1993) The Children’s Machine: Rethinking School in the Age of the Computer.
A seminal book that situates the maker movement and coding in a long progressive tradition. This is arguably the most important education book of the past quarter century.  Papert worked with Piaget, co-invented Logo, and is the major force behind educational computing, robotics, and the Maker Movement.


Perkins, David. (2010) Making Learning Whole: How Seven Principles of Teaching Can Transform Education.
A clear and concise book on how to teach in a learner-centered fashion by a leader at Harvard’s Project Zero. 

 


Tunstall, Tricia. (2013) Changing Lives: Gustavo Dudamel, El Sistema, and the Transformative Power of Music.
“One of the finest books about teaching and learning I’ve read in the past decade.” (Gary Stager) Tells the story of how hundreds of thousands of students in Venezuela are taught to play classical music at a high level. LA Philharmonic Conductor Gustavo Dudamel is a graduate of “El Sistema.” The lessons in this book are applicable across all subject areas. 

Check out the CMK Press collection of books on learning-by-making by educators for educators!

Hard fun at CMK 2016!

Constructing Modern Knowledge, celebrates its 10th anniversary this July 11-14, and represents the best work of my life. Before anyone was discussing the maker movement in schools, Constructing Modern Knowledge created a four-day oasis where educators could learn-by-doing through the construction of personally meaningful projects with digital and traditional materials. From the start, CMK was never a conference. It was an institute. From its inception, CMK was designed to build a bridge between the best principles of progressive education and the constructive tools of modernity.

Wearable computing

Since our focus was the Piagetian ideal that knowledge results from experience, educators attending Constructing Modern Knowledge, when not lost in project development, engage in formal and informal conversations with some of the greatest innovators and thinkers of our age.

Dont’ miss out! Register today!

CMK Speakers are not recruited for being cute or witty, but because they were experts with a body of profound work. CMK began with guest speakers Alfie Kohn, Peter Reynolds, and digital STEM pioneer Robert Tinker. Until his death, Marvin Minsky, arguably one of the most important scientists of the past century, led eight annual fireside chats with educators at CMK. The great mathematician, scientist, and software developer Stephen Wolfram “subbed” for Professor Minsky last year.

Two of the greatest jazz musicians in history led a masterclass at CMK. Years before his daily Blog changed the media landscape and he was featured in a commercial at the start of the Academy Awards, Casey Neistat was a guest speaker at CMK 2012. Civil rights icon Jonathan Kozol spent time at CMK. Alfie Kohn and Deborah Meier engaged in a spirited conversation, as did Eleanor Duckworth and Deborah Meier. Best-selling historian James Loewen spoke at CMK nearly a decade before Southern States began dismantling confederate statues. Wonder Kid and CMK 2015 speaker, Cam Perron, is about to be honored for his extraordinary contributions to baseball. MIT Media Lab faculty have generously hosted us for eight years. Check out the list of the other amazing people who have spoken at CMK.

YouTube filmmaker and media sensation Casey Neistat spoke at CMK 2012!

One of the great joys of my life has been sharing my heroes and friends with educators. Our faculty consists of brilliant women and men who invented the technology that justified computers in classrooms. Cynthia Solomon, the last surviving member of the three people responsible for inventing the Logo programming language for kids has been with us since the beginning. Everything I know about teaching teachers I learned from Dan and Molly Watt, who abandon retirement each summer to help educators reflect upon their CMK learning adventures. Brian Silverman has had a hand in every strain of Logo, Scratch, and LEGO robotics sets for the past forty years joins us each summer. The Aussies who invented 1:1 computing have been on our faculty as have the co-inventor of the MaKey MaKey and Super-Awesome Sylvia. Sadly, we recently lost the remarkable Edith Ackermann, an elegant and profound learning theorist who worked with Piaget, Papert, and Von Glasserfeld. Edith was part of CMK for three years and touched the hearts, minds, and souls of countless educators. CMK introduced the profound work of Reggio Emilia to a new community through the participation of Lella Gandini, Lillian Katz, and the magnificent Carla Rinaldi.

Legendary author & civil rights icon Jonathan Kozol explores a CMK project

Nothing moves me more deeply than the stories of how CMK participants had coffee or went for a walk with a genius they only had access to because of our institute.

Two of the greatest learning theorists in history, Edith Ackermann & Carla Rinaldi share a laugh at CMK 2016

CMK welcomes educators of all ability levels, from newbies to tech-savvy power users, but everyone learns together from and with each other. Annually, teachers at CMK create amazing projects that might have earned them a TED talk two years or engineering Ph.D. five years ago. For example, educators at CMK 2016 created their own version of Pokemon Go a mere week after the actual software was released to great media fanfare.

Most of all, year-after-year, Constructing Modern Knowledge demonstrates that:

  • Teachers are competent
  • Knowledge is a consequence of experience
  • Learning best occurs in the absence of instruction
  • Technology supercharges learning and makes us more human, creative, expressive
  • Education can and should be non-coercive
  • Assessment is at best adjacent to learning
  • Constructionism is effective
  • Things need not be as they seem
  • It is possible to create rich productive contexts for learning without fancy architecture, bells, furniture, curriculum, tests….
  • Educators are capable of innovation and invention with bleeding edge tools
  • Learning is natural, playful, intense, whimsical, and deadly serious
  • Age segregation, tracking, and even discrete disciplines are unnecessary and perhaps counterproductive
  • A learning environment should be filled with a great variety of objects-to-think with
  • Collaboration is great as long as its natural, interdependent, flexible, mutually beneficial, and desired
  • Computer programming is the new liberal art

Although a labor of love, Constructing Modern Knowledge is a hell of a lot of work and relies on the generosity of countless colleagues. I created CMK when no other institution or organization would do so and have run ten institutes with zero funding, grants, sponsors, or vendors. I packed up the first CMK and caught a plane two hours after the 2008 institute ended. Last year, eight of us spent two and a half days packing up the 60 or so cases of books, tools, materials, and technology we ship across the USA before and after each institute.

A few of the 60+ cases that become the CMK learning environment

Our hearts swell with pride from how CMK alumni are leading schools and professional learning events all over the world. Through their efforts, the impact of Constructing Modern Knowledge will be felt by children for decades to come.

If you have read this far, I hope you will understand that 2017 may be the last Constructing Modern Knowledge. Please consider joining us.

Since CMK believes that anything a learner needs should be within reach, we build a library.

Whether or not the Constructing Modern Knowledge summer institute ends in 2017, we will continue to offer innovative learning adventures for educators around the world. Check out the CMK Futures web site to learn about bringing our expertise to your school, community, corporation, or conference.

Note from Gary Stager…

In 1989, a great friend, colleague and pioneer in educational computing, Steve Shuller, authored the following literature review. Steve was Director of Outreach at Bank Street College during its microcomputer heyday, co-created New Jersey’s Network for Action in Microcomputer Education (N.A.M.E., now NJECC) and was a Director of the IBM Model Schools Project. Shortly before his untimely death Steve prepared this literature review for the Scarsdale, NY Public Schools, hoping that it would contribute to the end of tiresome discussions regarding keyboarding instruction.

Steve would be horrified that this trivial issue lives on in a field that has matured little in the past quarter century. I share his work with you as a public service and in loving memory of a great educator.

Keyboarding in Elementary Schools
Curricular Issues

Stephen M. Shuller
Computer Coordinator
Scarsdale, NY Public Schools

August 1989

Introduction

We are currently in the midst of a world-wide revolution, moving from the Industrial Age to an era in which information is the primary product (Toffler 1984). As information processing tools, computers are central to this revolution. The ability to interact with computers is an essential skill for the Information Age, one which our schools will need to address to prepare our students to meet the challenges of this fundamentally changed world.

The educational reform movement of the 1980’s has recognized the importance of computers in education. For example, A Nation at Risk (1983) calls for the high school students to:

(a) understand the computer as an information, computation, and communication device;

(b) use the computer in the study of the other Basics and for personal and work-related purposes; and

(c) understand the world of computers, electronics, and related technologies. (A Nation at Risk 1983, 26)

Virtually every other reform proposal has included similar recommendations. The educational community has responded to the futurists’ visions of the Information Age and the reformers proposals by working to integrate computers into the curriculum at all levels.

At present, people interact with computers by typing words on typewriter-like keyboards. Even though computers may someday be able to understand handwriting and human speech, in the currently foreseeable future-which in the Information Age may be only a dozen years or so at best-keyboarding skills are necessary to make computers do our bidding. Thus, keyboarding is an essential enabling skill for using computers in schools and in society, and must be included in Information Age curricula (Gibbon 1987).

Even though there is virtual unanimity that students should learn to keyboard, there is considerably less agreement on how, how much, when, and by whom. This paper will consider the teaching of keyboarding in elementary schools, examining these questions as a guide for curriculum development.

Keyboarding and Typing: Historical Context

Computer keyboards are similar to typewriters, Industrial Age tools invented by Christopher Sholes in 1868 and first marketed by Remington in 1873 (Yamada 1983). By the end of the 19th Century, typewriters were considered reliable writing tools, and started becoming widely used in offices (Pea and Kurland 1987). The first typing instruction was provided by typewriter manufacturers in about 1880 (Yamada 1983). It took public schools until 1915 to begin teaching typing as a high school occupational skill (West 1983).

By the 1920’s, educators began to experiment with using the new technology-typewriters–to help children learn to write (Pea and Kurland 1987). These experiments were quite successful. In the largest-scale controlled study, Wood and Freeman (1932) followed 2383 students as they learned to write on portable typewriters over a two year period. They found that the students who used typewriters wrote with more expression, showed higher reading scores, became better spellers, and enjoyed writing more than students learning to write using conventional methods. Similarly, Merrick (1941) found that typewriters helped the English development of high school students. Even so, typewriters did not catch on in education.

In the 1960’s and early 1970’s, there was another smattering of interest in using computers in language arts (Balajthy 1988). Edward Fry, a noted reading specialist at Rutgers University, published a book on using typewriters in language arts which was not widely used. Perhaps seeing a new window of opportunity, Fry (1984) revised his text and reissued it as an approach to keyboarding in language arts.

Since we have known for more than half a century that keyboarding can help elementary school children learn language skills, why have typewriters only rarely found their way into elementary school classrooms, in sharp contrast to the current push to put computers into schools? One answer is that schools by and large reflect the perceived needs of society. Industrial Age schools resembled factories, and funds for typewriters were only available to prepare the relatively few students who would become clerks and typists. Information Age schools must prepare the vast majority of students to use computers because they are information management tools.

But why start elementary school students on computers? Here there is less direct pressure from society and more interest from educators who see the potential to enhance education. The two main factors spurring this interest are the transformation of professional writing through word processing (Zinsser 1983) and the transformation of writing instruction through the process approach (Graves 1983). Computers can greatly facilitate implementation of a process approach to teaching writing (Green 1984; Daiute 1985), so many educators are interested. In the current social milieu, the taxpayers are often willing to supply the necessary equipment.

Keyboarding in Elementary Schools: Curricular Issues

Given that we would like to use microcomputer based word processing as a tool to teach writing, what sort of keyboarding skills will elementary school students need? There seem to be three main alternatives. If they have no familiarization with the computer keyboard, they will have to “hunt and peck.” If they know where the keys are but not how to touch type, they can “peck” without much “hunting,” preferably using both hands. Finally, they can learn to touch type.

Everyone seems to agree that keyboard familiarization is in order, but whether to stop there or to teach touch typing to elementary school students is controversial. Advocates of the keyboard familiarization approach argue that students can type quickly enough to facilitate their writing without touch typing, that touch typing demands too much from limited time and computer resources, and that touch typing skills are quickly forgotten unless the students continue to practice regularly. Advocates of touch typing counter that students who develop the “bad habit” of keyboarding with two fingers find it very difficult to learn correct touch typing skills later and that such skills will ultimately be very important because of increased speed and efficiency.

There is widespread agreement that elementary students need to be able to type at least as fast as they can write by hand to avoid interfering with their writing process. A number of investigators have determined elementary school student handwriting rates. Graham and Miller (1980) found that students in grades 4 through 6 can copy text at a rate of 7 to 10 words per minute (wpm). Graves (1983) found a range of 8 to 19 wpm for 9 and 10 year olds when composing. Freyd and Kahn (1989) found an average rate of 11.44 wpm among 6th graders. With no keyboarding instruction (familiarization or touch typing), students of these ages can generally type 3 to 5 wpm (Wetzel 1985, 1987; Stoecker 1988). Different testing procedures probably accounts for most of the variation in these results. Wetzel (1987) reports that 10 wpm is generally accepted as a benchmark writing rate for students in grades 4 through 6.

Can students learn to type as fast as they can write with a keyboard familiarization program and word processing practice alone? The results are mixed. Freyd and Kahn (1989) report two studies in which students were able to type at writing speed with just keyboard familiarization and practice. one group of 6th graders started with an average rate of 6.62 wpm in October. With one hour of word processing per week, they had increased their average speed to 10.12 wpm in May. On the other hand, Daiute (1985) found that 11 and 12 year olds could write more words by hand in 15 minutes than they could type on the computer even after six months of word processing experience. Dalton, Morocco, and Neale (1988) found that 4th graders were initially comfortable word processing without touch typing instruction, but became frustrated later in the year as they needed to enter longer texts into the computer. In this study, however, students began using the word processor with no previous keyboard familiarization, so the results are not surprising.

Advocates of touch typing frequently claim that teaching touch typing to students who first learned to type without proper fingering techniques is very difficult or impossible (Kisner 1984; Stewart and Jones 1985; National Business Educators Association 1987; Abrams 1988; Balajthy 1988). No empirical evidence is presented to substantiate this claim, however. Wetzel (1987) interviewed several typing teachers, some of whom were concerned about the “hunt and peck unlearning” problem, but others were not concerned, based on their own teaching experiences. West (1983) reports successfully teaching “hunt and peck” typists to use correct touch typing finger positions with about 10 hours of instruction.

By grade 3, children are developmentally able to touch type on electric keyboards. Advocates of touch typing generally agree that students should receive instruction just prior to the time they will need to use touch typing skills for word processing. If studen ts do not regularly practice typing, their skills can deteriorate in as little as six weeks (Warwood 1985). Wetzel (1987) found that students regress in their skills if they do not practice regularly after 20 hours of initial instruction. He cites business education research that students tend to retain their skills once they reach a plateau of 20 wpm. Gerlach (1987) ,found that with continued practice, students continue to improve their speed. In her study, 6th grade students who averaged 9.71 wpm after a 6 to 8 hour keyboarding course improved to 12.27 wpm four months later with continuing word processing practice.

Business educators have proposed a number of touch typing programs for elementary school students, some based on a recommended amount of instruction, others based on a performance criterion. Kisner (1984) recommended touch typing instruction in 20 to 30 minute periods, to a criterion of 20 wpm in Grade 3 or 25 wpm in grades 4 through 6. These recommendations seem to come from the experience of business education teachers with high school students rather than from keyboarding experience with elementary school children.

Jackson and Berg (1986) recommend 30 hours of instruction spread over two or three years, with weekly 30 minute review sessions. Instruction should take place in 20 to 30 minute periods, using a combination of software and a textbook. The recommended course sequence follows the traditional typing course, starting with the home row and introducing two new keys per session, with appropriate drills. Teachers should monitor the students continuously to make sure they are using proper form. Instruction should emphasize speed, not accuracy.

In 1987, the National Business Education Association (NBEA) proposed standards for keyboarding instruction in elementary schools. The NBEA recommended that elementary school students learn touch typing to a criterion of 15 wpm, and middle school students further develop their skill to a criterion of 25 wpm. Not surprisingly, the NBEA recommended that business education teachers, rather than elementary school classroom teachers, provide the instruction.

Wetzel (1985) surveyed the literature on touch typing programs for elementary school students, finding that fifth graders could be taught to touch type 22 wpm with a nine-weeks of daily instruction for 45 minutes, and fifth and sixth graders could achieve 40 wpm by spending one hour daily for a full year.

Alternatively, a more limited keyboarding instruction program consisting of instruction in correct fingering techniques and practice with a computer typing tutorial could lead to an average typing rate of 10 wpm in four weeks of 35 minute sessions or 15 wpm in nine weeks of such sessions. He also observed third, fourth, and fifth graders using word processors without touch typing instruction, finding that those who could type from 7 to 10 wpm were able to make adequate use of the computer for word processing. Given the heavy demands on teaching time in elementary schools, the relatively low level of typing skill needed to facilitate word processing and other computer activity, and the students’ ability to increase typing proficiency through continued computer use, Wetzel recommended a limited keyboarding program to accomplish a typing speed of 10 wpm in a relatively short period of time.

In a later paper, Wetzel (1987) modified these recommendations to take into account differing amounts of computer usage. If students regularly use computers at least two hours per week, Wetzel feels that they will get enough practice to sustain typing skills, justifying a 20 to 30 hour period of initial instruction in touch typing. If students characteristically use computers one hour per week or less, only a much more limited program of keyboard familiarization is recommended.

Stoecker (1988) developed a touch typing program of instruction designed for use by elementary school teachers. After a four week course, 20 sessions of 30 minutes each, fifth and sixth graders achieved typing rates of about 12 wpm. Stoecker’s program consists of student and teacher materials for use with any word processor. He has found that elementary school classroom teachers can learn to use this approach through a one day long training workshop.

Balajthy (1988) emphasizes the importance of integrating keyboarding instruction into the language arts curriculum. He cites recent studies showing that keyboarding can improve language arts skills, results which are consistent with the typewriter-based studies of the 1930’s and 19401s. Balajthy, like Wetzel, finds that students can achieve adequate typing skills with a limited period of keyboarding instruction-about 8 to 10 hours-followed by regular practice with computer activities. Like Stoecker, Balajthy recommends teacher- keyboarding instruction using a word processor rather than use of a software-based tutorial. Balajthy (1987) cautions that unless students have significant amounts of ongoing typing or word processing activity, touch typing instruction is a waste of time because skills will deteriorate rapidly.

One reason why Stoecker and Balajthy recommend keyboarding instruction on word processors with teacher supervision is because computer tutorials cannot monitor correct fingering and other aspects of proper touch typing. Stoecker (1988) reportsthat non-typists tend to use two fingers unless a teacherobserves. In contrast, Mikkelson and Gerlach (1988) performed acontrolled study in which third to sixth graders worked with a computer typing tutorial. Half of the students were supervised and encouraged to use proper touch typing form; the other half were observed but not supervised. The results were surprising–both groups made similar progress in typing skill, and there was no difference between groups in propensity to use correct touch typing techniques.

If Mikkelson and Gerlach’s results are generalizable, it would be possible for elementary school teachers to obtain satisfactory results by teaching touch typing through limited individual work with a computer typing tutorial. Such instruction could take place on classroom computers while other activities were taking place. If students need to be supervised to insure proper fingering techniques, then either elementary classroom teachers will need to be trained to teach touch typing or business education teachers will be needed.

Keyboarding and the Future 

In their Database of Competencies for Business Curriculum Development, the NBEA defined keyboarding as follows:

Keyboarding is defined as the act of placing information into various types of equipment through the use of a typewriter-like keyboard. Typewriting and keyboarding are not synonymous. The focus of a keyboarding course is on input rather than output. (NBEA 1987, A-19)

Keyboarding is seen as a way to input information into a computer so that it can be manipulated. Thus, initial accuracy is less important than speed, ability to manipulate text is more important than formatting skills for specific types of documents, and composing is more important than transcribing (so it does not matter so much if the typist looks at the keys).

These distinctions recognize important changes in the purposes for which people type on Industrial Age typewriters and on Information Age computer keyboards. Yet, if we look closely at the keyboarding programs proposed by business educators, we find a methodology geared to the Industrial Age purpose of transcribing rather than the Information Age purpose of composing (Freyd and Kahn 1989).

This discrepancy is not surprising. As Naisbitt (1982) observed, people tend first to use a new technology in the same ways they have used older technologies which seem similar. only after a (sometimes lengthy) period of incubation do we see new directions or uses that grow out of the technology itself. So, at this point it is useful to take a step back and consider whether we might be looking at the keyboarding issue all wrong.

Graves (1983) has determined that five and six year old beginning writers compose at a painstakingly slow pace of 1.5 words per minute. At that rate, writing down a six word sentence can take up to nine minutes. Even five and six year olds who are unfamiliar with keyboards can compose more quickly and easily on computers than by hand (Wetzel, 1985). Graves has remarked that “one can imagine starting kids off writing on keyboards and save handwriting until motor skills are more highly refined.” (Green 1984).

Fry (1987) has proposed that schools eliminate the teaching of cursive writing and substitute keyboarding. He points out that cursive writing is not taught in European schools; students learn manuscript, and then develop their own handwriting style through shortcuts. By teaching cursive writing instead of keyboarding, Fry says, “we are training for the last century instead of for the next century.”

The issue of touch typing versus two-finger typing may be similar. Gertner and Norman (1984) have observed that the main advantage of touch typing is in copying. Copying is important for Industrial Age clerks and typists to transcribe business documents, but it is irrelevant to writers using word processing to compose and edit. By insisting on touch typing, are we training for the last century instead of for the next?

The New York State Keyboarding Curriculum

The New York State Board of Regents Action Plan to Improve Elementary and Secondary Education Results in New York calls for instruction in keyboarding to be “included in the State-developed English Language Arts Syllabus.” A state education department curriculum guide entitled Developing Keyboarding Skills to Support the Elementary Language Arts Program further stipulates that “approximately 18 to 20 hours of instruction should be devoted to keyboarding instruction within the framework of the Language Arts Program in the elementary grades.” (New York State Education Department 1986, 23).

The state keyboarding curriculum closely parallels material published by the National Business Education Association and by-state and local business education personnel. As described above, this means that the general thrust of the guide recognizes different needs and objectives between traditional typing instruction and keyboarding instruction, the recommended teaching strategies follow a more or less traditional touch typing approach. The influence of the business education community is apparent from the Suggested Readings offered in Appendix B. Of the 25 references listed on pages 29 and 30, 15 are to business education sources, and only 4 are to computer education and 3 more to general education sources.

The state curriculum clearly reflects the relative strength of business educators compared with computer coordinators in New York. For example, under “General Guidelines for Achieving Outcomes,” the guide suggests that:

business education teachers should be called upon to assist in the development of keyboarding curricula, in-service training, and selection of materials and methodology. (5)

Under “Planning for Teacher Awareness and Training:

… the business education teacher … can be very helpful in developing the plan and for training other teachers in appropriate keyboarding techniques. Business education teachers can also serve as a resource once a program is in place to conduct follow- activities as needed. (6)

Under delivery of instruction, the curriculum calls for students to learn touch typing, including correct fingering, posture, and eye contact (away from the keyboard, that is). The guide stops short of requiring business education teachers to teach the keyboarding courses, but states:

Teachers who have been trained in keyboarding methodology are of considerable importance in achieving these goals. (7)

In contrast, computer coordinators are mentioned only once in thecurriculum guide. The guide clearly views computer coordinators as technicians rather than instructional leaders, suggesting that they can be helpful in scheduling labs, repairing equipment, finding software and the like. The next sentence reminds the reader that knowledgeable high school students can also provide “considerable assistance.” (7)

To its credit, the state keyboarding guide does focus on integrating keyboarding into the language arts curriculum, as suggested by Balajthy (1988) and others. But it leans so heavily for its methodology on the perspective of the past that it is” suspect as a guide to the future.

Conclusions and Recommendations

There is widespread agreement that elementary school students need keyboarding skills. Whether keyboard familiarization is sufficient or whether students need touch typing skills depends on the nature of the school’s language arts and computer education curricula.

Touch typing courses are only effective if students receive a substantial period of initial instruction followed by regular practice throughout the school year. Touch typing courses can be recommended when computers are fully integrated into the language arts curriculum and when students regularly have at least two hours of individual computer time per week. In this type of environment, the initial touch typing instruction should occur at the time when students will first become involved with computers on a regular basis. The initial instruction should be provided either by specialists or by classroom teachers who have been given training in how to teach touch typing.

In situations where students make more limited use of computers, the evidence at hand suggests that a program of keyboard familiarization is sufficient to provide adequate keyboarding skills to support word processing and other uses of computers in elementary schools. Keyboard familiarization can be taught by classroom teachers assisted by appropriate computer software.

As we move further into the Information Age, fundamental changes in our school curricula will follow, paralleling the changing needs of society. Envisioning these changes, we can imagine a time when keyboarding will replace cursive writing as an essential skill for elementary school children, complementing a language arts curriculum using computers extensively for such activities as writing with word processors. Developing an Information Age language arts curriculum with keyboarding as a fundamental skill should be a central focus of our long-range curriculum planning.

References

Abrams, Jeri. “Keys to Keyboarding.” Boston Computer Society Education Special Interest Group News 4 (November/December 1988): 6-12.

Balajthy, Ernest. “Keyboarding and the Language Arts.” The Reading Teacher 41 (October 1987): 86-87.

Balajthy, Ernest. “Keyboarding, Language Arts, and the Elementary School Child.” The Computing Teacher 15 (February 1988): 40-43.

Daiute, Colette. Writing and Computers. Reading, MA: AddisonWesley, 1985.

Dalton, Bridget M., Catherine Cobb Morocco, and Amy E. Neale.

“I’ve Lost My Story!” Mastering The Machine Skills for Word Processing. Paper presented at the annual meeting of the American Educational Research Association, New Orleans, 1988.

Freyd, Pamela and Jessica Kahn. “Touch Typing in Elementary Schools-Why Bother?” In William C. Ryan, Ed. Proceedings of the National Educational Computing Conference 1989. Eugene, OR: International Council on Computers for Education, 1989.

Fry, Edward. Computer Keyboarding for Children. NY: Teachers College Press, 1984.

Fry, Edward. Quoted in “Keyboarding replacing writing: Penmanship should be out and typing in, professor says.” The Associated Press, 2 February, 1987.

Gentner, Donald and Donald Norman. “The Typist’s Touch.” Psychology Today 18 (March 1984): 67-72.

Gerlach, Gail J. The Effect of Typing Skill on Using a Word Processor-for Composition. Paper presented at the annual meeting of the American Educational Research Association, Washington, DC, 1987.

Gibbon, Samuel Y., Jr. “Learning and Instruction in the Information Age.” In Mary Alice White, Ed. What Curriculum for the Information Age? Hillsdale, NJ: Erlbaum, 1987.

Graham, Steve and Lamoine Miller. “Handwriting Research and Practice: A Unified Approach.” focus on Exceptional Children 13 (1980): 1-16.

Graves, Donald H. Writing: Teachers-and Children at Work. Exeter, NH: Heinemann, 1983.

Green, John 0. “Computers and Writing: An Interview with Donald Graves.” Classroom Computer Learning 4 (March 1984): 21-23, 28.

Jackson, Truman H. and Diane Berg. “Elementary Keyboarding-Is it important?” The Computing Teacher 13 (March 1986): 8-11.

Kisner, Evelyn. “Keyboarding-A Must in Tomorrow’s World.” The Computing Teacher 11 (February 1984): 21-22.

Koenke, Karl. “ERIC/RCS Report: Keyboarding: Prelude to Composing at the Computer-” English Education 19 (December 1987): 244-249.

McCrohan, Jane. Teaching Keyboarding: The first step in making the computer an effective writing tool. Paper presented at the New Jersey Educational Computing Conference, 1989.

McLean, Gary N. “Criteria for Selecting Computer Software for Keyboarding Instruction.” Business Education Forum 41 (May 1987): 10, 12.

Merrick, Nellie L. “Typewriting in the University High School.” School Review 49 (April 1941): 284-296.

Mikkelsen, Vincent P. and Gail Gerlach. Teaching Keyboarding Skills to Elementary School Students in Supervised and Unsupervised-Environments. ERIC Document Number ED301152, 1988.

Naisbitt, J. Megatrends: Ten New Directions Transforming our Lives. New York: Warner Books, 1982.

National Business Education Association. Database of Competencies for Business curriculum Development, K-14. ERIC Document Number ED 294064, 1987.

A Nation at Risk: The Imperative for Educational Reform (Washington, DC: U.S. Government Printing Office [1983]).

Pea, Roy D. and D. Midian Kurland. “Cognitive Technologies for Writing.” In Ernst Z. Rothkopf, Ed. Review of Educational Research, Volume 14. Washington, DC: American Educational Research Association, 1987.

Stewart, Jane and Buford Jones. “Keyboarding Instruction: Elementary School Options.” Business Education Forum 37 (1983): 11-12.

Stoecker, John W. Teacher Training for Keyboarding Instruction– 4-8: A Researched and Field Tested Inservice Model. ERIC Document Number ED290451, 1988.

Warwood, B., V. Hartman, J. Hauwiller, and S. Taylor. A Research Study to Determine the Effects of Early Keyboard Use upon Student Development in Occupational Keyboarding. Bozeman, MT: Montana State University, 1985. ERIC Document Number ED 265367.

West, L. The Acquisition of Typewriting Skills. Indianapolis, IN: Bobbs-Merrill, 1983.

Wetzel, Keith. “Keyboarding Skills: Elementary, My Dear.” The Computing Teacher 12 (June 1985): 15-19.

Wetzel, Keith. “Keyboarding-An Interview with Keith Wetzel.”

Making the Literature, Writing, Word Processing Connection. The Writing Notebook, 1987.

Wood, Ben D. and Frank N. Freeman. An Experimental Study of the Educational Influences of the Typewriter in the Elementary School Classroom. NY: MacMillan, 1932.

Yamada, Hisao. “A Historical Study of Typewriters and Typing Methods: from the Position of Planning Japanese Parallels.” In Dudley Gibson., Ed. Wordprocessing and the Electronic office. LondonCouncil for Educational Technology, 1983.

Zinsser, W. Writing with a Word Processor. NY: Harper and Row, 1983.

Eric Rosenbaum (L) demonstrates the MaKey MaKey to Marvin Minsky (R) at CMK 2012

Constructing Modern Knowledge 2017 is thrilled to announce that Dr. Eric Rosenbaum will be joining our 10th annual summer institute, July 11-14 in Manchester, New Hampshire. Eric, one of the most prolific inventors of creative play materials for learners (MaKey MaKey, Beetleblocks, Singing Fingers, Coloring Cam – to name a few) will provide CMK 2017 participants with a sneak peak at the much-much-anticipated Scratch 3.0 programming environment!

Register for Constructing Modern Knowledge 2017

Dr. Rosenbaum will lead a demo and Q&A after a presentation by CMK 2017 guest speaker, Dr. Neil Gershenfeld, Director of MIT’s Center for Bits and Atoms and maker movement pioneer at our very special reception at the MIT Media Lab. Gershenfeld is author of the seminal book, Fab: The Coming Revolution on Your Desktop–from Personal Computers to Personal Fabrication, a book that created the foundation for the modern maker movement.

Eric Rosenbaum and Neil Gershenfeld join littleBits Founder and CEO, Ayah Bdeir, and MacArthur Genius-Award winning educator (and CMK favorite) Deborah Meier as guest speakers at Constructing Modern Knowledge 2017.


About Eric Rosenbaum, Ph.D.

Eric Rosenbaum earned a Ph.D. in the Lifelong Kindergarten group at MIT Media Lab, where he created new technologies at the intersection of music, improvisation, play and learning. He is currently the Senior Front End Engineer Scratch in the MIT Media Lab’s Lifelong Kindergarten Group and worked recently with the with Google Creative Lab and NYU Music Experience Design Lab. Eric’s projects include the MaKey MaKey invention kit, the Singing Fingers app for finger painting with sound, the Glowdoodle web site for painting with light, Coloring Cam app for using your camera and the world as a coloring book, MmmTsss software for improvising with looping sounds, and a Scratch-like language for creating interactive behaviors in the virtual world of Second Life.

One of his latest projects is the creation of Beetle Blocks, a visual programming language for creating 3D designs you can print. This will be Eric’s third year at Constructing Modern Knowledge.

Eric Rosenbaum on the faculty of CMK 2012

Eric holds a Bachelors degree in Psychology and a Masters degree in Technology in Education from Harvard University. He also holds a Masters degree and Ph.D. in Media Arts and Sciences from MIT Media Lab, for which he developed Jots, a system to support reflective learning in the Scratch programming environment.

Learn more about Eric here.

Register for Constructing Modern Knowledge 2017


About Constructing Modern Knowledge 2017

Constructing Modern Knowledge, July 11-14, 2017 is a minds-on institute for educators committed to creativity, collaboration and computing. For ten years CMK has been viewed as the gold standard of professional learning events at the intersection of learning-by-doing, cutting-edge technology, and progressive education.

Participants will have the opportunity to engage in intensive computer-rich project development with peers and a world-class faculty. Inspirational guest speakers and social events round out the fantastic event. Rather than spend days listening to a series of speakers, Constructing Modern Knowledge is about action. Attendees work and interact with educational experts concerned with maximizing the potential of every learner.

While our outstanding faculty is comprised of educational pioneers, bestselling authors and inventors of educational technologies we depend on, the real power of Constructing Modern Knowledge emerges from the collaborative project development of participants.

Each day’s program consists of a discussion of powerful ideas, mini tutorials on-demand, immersive learning adventures designed to challenge one’s thinking, substantial time for project work and a reflection period.

Register for Constructing Modern Knowledge 2017

One of my students in 1982

I graduated high school in June 1981 and despite having spent the past six years programming and teaching others too, I was told that I could not major in Computer Science because I was bad at math and I said goodbye to computing at graduation because who would ever see a computer again.

I came home from my freshman year at Berklee College of Music for Xmas 1981. My Mom told me to find a summer job. Summer camp jobs were my best bet and I applied to several during the holiday break. No camp would hire me to be a music counsellor since I didn’t play the guitar. While sitting in the office of Deerkill Day Camp, a family owned camp now led by a third generation, I was told that I was disqualified from being the music counsellor due to my guitar deficit, but the camp director/owner saw on my ersatz resumé that I had programmed computers in high school.

He pointed to a minicomputer in his office (it may have been a Hazeltine) and asked me to write a program in BASIC to do something I cannot remember. I hadn’t touched a computer in more than six months, but my program worked. I was told that Deerkill was thinking of starting a computing program for its campers and that I would be its director.

Voila! I had a career.

 

In January 1982, at age 18 1/2, I was hired to create one of the world’s first computer programming camps for kids anywhere on earth. I had a staff, a budget, and was considered a senior administrator. We had a dozen or so Vic-20s in a horse trailer by a man-made pond and a goat (if memory serves).

The program was such a success that the following year they told me that the camp had expanded my facility. They built a porch onto the horse trailer and we got Commodore 64s with an “octopus” which connected a dozen computers to one floppy disk drive. Booting software was a two-person operation since one person had to turn the knob on the octopus to direct the data stream to the right computer and the other person hit return to begin loading the software. 

The computers on the porch had to be brought in at lunchtime and at the end of each day. Hundreds of boys and girls K-8 learned to program each summer in the horse trailer. I also taught BASIC and Logo programming in the camp director’s house during the winter and in an elementary school in New City, NY. Soon after I began teaching teachers. I worked at Deerkill Day Camp for four summers and dream of returning every year.

*The photo above was just posted by the camp for #tbt.


Gary Stager is the founder of the Constructing Modern Knowledge summer institute for educators July 11-14, 2017, coauthor of Invent To Learn – Making, Tinkering, and Engineering in the Classroom, and curator of the Seymour Papert archive site, DailyPapert.com.

Register today for Constructing Modern Knowledge 2017!